Delay-Tolerant ICN and Its Application to LoRa

Peter Kietzmann¹, José Alamos^{1/3}, Dirk Kutscher² Thomas C. Schmidt¹ and Matthias Wählisch³

peter.kietzmann@haw-hamburg.de

9th ACM Conference on Information-Centric Networking (ICN 2022) 21.09.2022

What is LoRa?

High level facts

- Long range wireless (kilometers)
- Small energy consumption (millijoules)
- Limited throughput (bits per second)

Low level facts

- Chirp spread spectrum modulation
- Robust against interference, multi-path fading, doppler, ...

What is LoRa?

High level facts

- Long range wireless (kilometers)
- Small energy consumption (millijoules)
- Limited throughput (bits per second)

Low level facts

- Chirp spread spectrum modulation
- Robust against interference, multi-path fading, doppler, ...

In Proc. of ACM ICN, ACM, 2020.

Long-Range IoT: Is LoRaWAN an option for ICN?

<u>Peter Kietzmann</u>, Dirk Kutscher, Thomas C. Schmidt and Matthias Wählisch

peter.kietzmann@haw-hamburg.de

7th ACM Conference on Information-Centric Networking (ICN 2020)

In Proc. of IFIP Networking, IEEE, 2022.

Long-Range ICN for the IoT: Exploring a LoRa System Design

Peter Kietzmann^{*}, José Alamos^{*‡}, Dirk Kutscher[‡], Thomas C. Schmidt^{*}, Matthias Wähllsch[‡] HAW Hamburg, Germany^{*} Hochschule Emden/Leer, Germany[‡] Freie Universitä Berlin, Germany[‡] (first.last)@haw-hamburg.de, hs-emden-leer.de, Un-berlin.de), Lschmidt@Baw-hamburg.de

Abstract—This paper presents LoRa-ICN, a comprehensive IoT networking system based on a common long-range communication layer (LoRa) combined with Information-Centric Networking (ICN) principles. We have replaced the LoRaWAN MAC base our system design on the following four requirements: (*i*) enabling LoRa networks and Nodes in these networks to communicate directly with hosts on the Internet; (*ii*) empoweering LoRa Gateways to act as routers, without the need to

— HAMBURG

EMDEN•LEER

To achieve this, we:

- 1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
- 2. Introduce new gateway behavior and leverage recently proposed ICN extensions
- 3. Experimentally compare 'Vanilla' ICN and the extensions on IoT hardware

To achieve this, we:

- 1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
- 2. Introduce new gateway behavior and leverage recently proposed ICN extensions
- 3. Experimentally compare 'Vanilla' ICN and the extensions on IoT hardware

To achieve this, we:

- 1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
- 2. Introduce new gateway behavior and leverage recently proposed ICN extensions
- 3. Experimentally compare 'Vanilla' ICN and the extensions on IoT hardware

Outline

Problem Statement

System Overview

Implementation and Deployment

Evaluation

Conclusion & Outlook

Problem Statement

Sending Interest

- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission

- Knowledge about app. time domain
- ▶ PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest

- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT

Sending Interest

- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission

- Knowledge about app. time domain
- ▶ PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest

- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT

Sending Interest

- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission

- ► Knowledge about app. time domain
- PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest

- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT

Sending Interest

- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission

- ► Knowledge about app. time domain
- PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest

- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT

Alternaitve Retransmission Techniques

In-network retransmission (e.g., CCN-lite)

- Hop-wise retransmit by every forwarder
- No suffering from Interest aggregation
- Allows long-lived PIT state
- On-path nodes need to guess suitable timeouts

Retransmission suppression (*e.g.*, NFD)

- Suppress same name Interest in suppression interval
- RTT estimation should permit reasonable consumer retrans. intervals
- Main purpose is prevention of DDoS attacks
- Long and vastly differing RTT still challenging

Alternaitve Retransmission Techniques

In-network retransmission (e.g., CCN-lite)

- Hop-wise retransmit by every forwarder
- No suffering from Interest aggregation
- Allows long-lived PIT state
- On-path nodes need to guess suitable timeouts

Retransmission suppression (e.g., NFD)

- Suppress same name Interest in suppression interval
- RTT estimation should permit reasonable consumer retrans. intervals
- Main purpose is prevention of DDoS attacks
- Long and vastly differing RTT still challenging

Alternaitve Retransmission Techniques

In-network retransmission (*e.g.*, CCN-lite)

Guessing suitable intervals is challenging Cannot expect forwarders to honor InterestLifetime

Deal with high and differing RTTs explicitly No interfering with network layer InterestLifetime

Relieve forwarders from domain specific knowledge

wiani purpose is prevention or DDOS attacks

Long and vastly differing RTT still challenging

System Overview

Gateway Node Requirements

Gateway operation

- Gateway serves one LoRa network
- Application agnostic caching forwarder
- Connect narrowband LoRa to broadband ICN network
- Leverage knowledge about last-hop delays
 Adjust PIT timeout and InterestLifetime

Node registration

- Nodes register prefixes at gateway
- Gateway acts as a node custodian

CN Node Internet data Gateway

Data provisioning by nodes

Asynchronous data provisioning by unsolicited data
 Gateway only caches data from registered nodes

Gateway Node Requirements

Gateway operation

- Gateway serves one LoRa network
- Application agnostic caching forwarder
- Connect narrowband LoRa to broadband ICN network
- Leverage knowledge about last-hop delays
 Adjust PIT timeout and InterestLifetime

Node registration

- Nodes register prefixes at gateway
- Gateway acts as a node custodian

CN Node Internet data Gateway

Data provisioning by nodes

Asynchronous data provisioning by unsolicited data

Gateway only caches data from registered nodes

Gateway Node Requirements

Gateway operation

- Gateway serves one LoRa network
- Application agnostic caching forwarder
- Connect narrowband LoRa to broadband ICN network
- Leverage knowledge about last-hop delays
 Adjust PIT timeout and InterestLifetime

Node registration

- Nodes register prefixes at gateway
- Gateway acts as a node custodian

Data provisioning by nodes

- Asynchronous data provisioning by unsolicited data
- Gateway only caches data from registered nodes

Two Delay-Tolerant ICN Protocols

- 1. Consumer-initiated
 - Internet consumers request arbitrary content
 - RICE [31] supports vastly longer and varying delays
 - On 1st Interest:
 - Gateway checks if node falls under registered prefix
 - Gateway forwards Interest to LoRa node
 - Gateway returns estimated wait time
 - On 2nd Interest:
 - Gateway satisfies request from content store (CS)

Delay-tolerant Data Retrieval

Two Delay-Tolerant ICN Protocols

- 2. Producer-initiated
 - LoRa nodes place content in gateway cache, if registered
 - Leverage phoning home use case of reflexive forwarding [46] (two nested Interest/Data exchanges)
 - Gateway sends Interest to Internet node, indicating name
 - Consumer returns reflexive Interest and retrieves content
 - Optional data ACK terminates initial Interest

Reflexive Push

Reflexive Push

Vanilla

Delay-tolerant Data Retrieval

Reflexive Push

Vanilla

Vanilla (1)

- Baseline scenario, common parameter settings
- InterestLifetime: 4 s
- Retransmission interval: 1 s

Vanilla

Vanilla (1)

- Baseline scenario, common parameter settings
- InterestLifetime: 4 s
- ▶ Retransmission interval: 1 s

Vanilla (2)

- Delay-aware consumer
- InterestLifetime: 60 s
- Forwarders do not adopt InterestLifetime
- Retransmission interval: 15 s

Vanilla

Vanilla (1)

- Baseline scenario, common parameter settings
- Interestl ifetime[.] 4 s
- Retransmission interval: 1 s

Vanilla (2)

- Delay-aware consumer
- InterestLifetime: 60 s
- Forwarders do not adopt InterestLifetime
- Retransmission interval: 15 s

Vanilla (3)

Like Vanilla (2) but forwarders do adopt InterstLifetime

Interest

ta 🛛 …… control func. 🛣 long delay 🝳 reg. lookup 😽 do not cache 🏟 PIT timeout

Implementation and Deployment

System Setup

LoRa Device

- Low-power, long-range sensor application
- ARM Cortex-M4 @ 64 MHz 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway

- Same hardware (reduce impl. overhead)
- Two network interfaces:
 - 1. Wireless coordinator for LoRa
 - 2. Wired Ethernet for Internet

Internet

- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- Forwarder and consumer emulated in Mininet

System Setup

LoRa Device

- Low-power, long-range sensor application
- ARM Cortex-M4 @ 64 MHz 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway

- Same hardware (reduce impl. overhead)
- Two network interfaces:
 - 1. Wireless coordinator for LoRa
 - 2. Wired Ethernet for Internet

Internet

- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- Forwarder and consumer emulated in Mininet

System Setup

LoRa Device

- Low-power, long-range sensor application
- ARM Cortex-M4 @ 64 MHz 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway

- Same hardware (reduce impl. overhead)
- Two network interfaces:
 - 1. Wireless coordinator for LoRa
 - 2. Wired Ethernet for Internet

Internet

- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- ► Forwarder and consumer emulated in Mininet

Evaluation

Vanilla (1)

- Consumer retransmission

-- Consumer retransmission (5% loss)

— In-network retransmission

- Consumer retransmission

-- Consumer retransmission (5 % loss)

— In-network retransmission

- Consumer retransmission

-- Consumer retransmission (5% loss)

— In-network retransmission

- Consumer retransmission

-- Consumer retransmission (5 % loss)

— In-network retransmission

- Consumer retransmission
- -- Consumer retransmission (5% loss)
- In-network retransmission
- -- In-network retransmission (5% loss)

- Consumer retransmission
- -- Consumer retransmission (5% loss)
- In-network retransmission
- -- In-network retransmission (5% loss)

CDF

Vanilla (1) Vanilla (2) Vanilla (3) 1.0 -**Cannot** expect forwarders to adopt arbitrary PIT timers Long PIT state unreliable with consumer retransmissions In-network retransmissions require RTT knowledge

- Consumer retransmission

-- Consumer retransmission (5 % loss)

— In-network retransmission

Consumer retransmission — In-network retransmission

- Consumer retransmission (5 % loss) -- In-net

- Consumer retransmission

-- Consumer retransmission (5% loss)

— In-network retransmission

- Consumer retransmission
- In-network retransmission
- Consumer retransmission (5% loss) In-network retransmission (5% loss)

- Consumer retransmission

-- Consumer retransmission (5 % loss)

- In-network retransmission

Evaluation of communication- and system overhead in our paper!

In this work, we ...

- \ldots observed that interconnecting networks with vastly different RTTs is challenging
- ... found that ICN has potential to enable robust communication to edge networks
- $\ldots contributed \ an \ implementation \ of \ ICN/DSME/LoRa \ and \ two \ ICN-style \ extensions$

Our results show that ...

...our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability ...compared to Vanilla ICN, they enable targeted completion time and overcome polling ...ICN/DSME/LoRa provides low-power consumption with lifetimes >1 y (AA battery)

In future work we will ...

... implement a gateway estimator model including domain knowledge ...

- \ldots explore security including gateway trust, LoRa node authentication \ldots
- ... evaluate complex topologies including multi-gateway, node-to-node ...
- ... investigate additional use cases including RMI, firmware updates ...

In this work, we ...

- ... observed that interconnecting networks with vastly different RTTs is challenging
- \ldots found that ICN has potential to enable robust communication to edge networks
- ... contributed an implementation of ICN/DSME/LoRa and two ICN-style extensions

Our results show that ...

... our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability ... compared to Vanilla ICN, they enable targeted completion time and overcome polling ... ICN/DSME/LoRa provides low-power consumption with lifetimes >1 y (AA battery)

In future work we will ...

... implement a gateway estimator model including domain knowledge ...

- \ldots explore security including gateway trust, LoRa node authentication \ldots
- ... evaluate complex topologies including multi-gateway, node-to-node ...
- ... investigate additional use cases including RMI, firmware updates ...

In this work, we ...

- ... observed that interconnecting networks with vastly different RTTs is challenging
- ... found that ICN has potential to enable robust communication to edge networks
- ... contributed an implementation of ICN/DSME/LoRa and two ICN-style extensions

Our results show that ...

... our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability ... compared to Vanilla ICN, they enable targeted completion time and overcome pollin

In future work we will

- \ldots implement a gateway estimator model including domain knowledge \ldots
- \ldots explore security including gateway trust, LoRa node authentication \ldots
- $\dots evaluate \ complex \ topologies \ including \ multi-gateway, \ node-to-node \ \dots$
- \ldots investigate additional use cases including RMI, firmware updates \ldots

Thank You!

We support reproducible research.

https://github.com/inetrg/ACM-ICN-LoRa-ICN-2022.git