Delay-Tolerant ICN and Its Application to LoRa

Peter Kietzmann1, José Alamos1/3, Dirk Kutscher2
Thomas C. Schmidt1 and Matthias Wählisch3

peter.kietzmann@haw-hamburg.de

9th ACM Conference on Information-Centric Networking (ICN 2022)
21.09.2022
ICN Node

Internet

Fast wired network
(~ 20ms latency)
Different understanding of RTT

Fast wired network (~ 20ms latency)
Fast wired network
(~ 20ms latency)

Slow wireless network
(> 20s latency)
What is LoRa?

High level facts
- Long range wireless (kilometers)
- Small energy consumption (millijoules)
- Limited throughput (bits per second)

Low level facts
- Chirp spread spectrum modulation
- Robust against interference, multi-path fading, doppler, ...
What is LoRa?

High level facts

- Long range wireless (kilometers)
- Small energy consumption (millijoules)
- Limited throughput (bits per second)

Low level facts

- Chirp spread spectrum modulation
- Robust against interference, multi-path fading, doppler, ...

Attractive technology for the constrained IoT
LoRa, LoRa**WAN**, and ICN

In *Proc. of ACM ICN, ACM, 2020.*

Long-Range IoT:
Is LoRaWAN an option for ICN?

Peter Kietzmann, Dirk Kutscher,
Thomas C. Schmidt and Matthias Wählisch

peter.kietzmann@haw-hamburg.de

7th ACM Conference on Information-Centric Networking (ICN 2020)
LoRa, LoRaWAN, and ICN

Unreliable wireless uplink communication

Centralization prevents edge scenarios and complicates data sharing
Long-Range ICN for the IoT: Exploring a LoRa System Design

Peter Kietzmann*, José Alamos∗‡, Dirk Kutscher †, Thomas C. Schmidt*, Matthias Wählisch‡
HAW Hamburg, Germany∗ Hochschule Emden/Leer, Germany‡ Freie Universität Berlin, Germany‡
{first.last}@{haw-hamburg.de, hs-emden-leer.de, fu-berlin.de}, t.schmidt@haw-hamburg.de

Abstract—This paper presents LoRa-ICN, a comprehensive IoT networking system based on a common long-range communication layer (LoRa) combined with Information-Centric Networking (ICN) principles. We have replaced the LoRaWAN MAC protocol and employed a new radio interface that allows for different mappings of ICN message semantics, which improves robustness properties of current LoRaWAN systems. Furthermore, built-in caches in ICN facilitate more efficient LoRa communication overhead, whereas link capacity is scarce and expensive. Named and authenticated data access enables location-independence since applications can access named data directly, without resorting to lower-layer addresses. Furthermore, built-in caches in ICN facilitate more efficient LoRa communication overhead, whereas link capacity is scarce and expensive. Named and authenticated data access enables location-independence since applications can access named data directly, without resorting to lower-layer addresses. Thus, our design provides a basis for efficient ICN and energy-efficient long-range communication. In summary, our main contributions are:

1) The design of ICN over LoRa, including a suitable DSME and multi-channel MAC layer, and FLoRa to simulate LoRa-type devices—and a proof-of-concept demonstration of our adaptation layers in that system. (§ V)

2) Based on our simulation results, we derive preferred mappings of ICN message semantics in LoRa scenarios. (§ VI)

3) Based on our simulation results, we derive preferred mappings of ICN message semantics in LoRa scenarios. (§ VI)

4) The whole LoRa-ICN system is a vertically integrated stack that leads to inflexible system designs and inefficiencies. For example, all repeated round trips introduced by slow transmissions. (§ VII)

5) The whole LoRa-ICN system is a vertically integrated stack that leads to inflexible system designs and inefficiencies. For example, all repeated round trips introduced by slow transmissions. (§ VII)

6) The whole LoRa-ICN system is a vertically integrated stack that leads to inflexible system designs and inefficiencies. For example, all repeated round trips introduced by slow transmissions. (§ VII)

LoRa, LoRaWAN, and ICN

Long-range ICN system design (simulated)

ICN / 802.15.4 DSME / LoRa

ICN: offload wireless, decrease latency, facilitate sleep
DSME: deterministic, reliable, low-power
LoRa, LoRaWAN, and ICN

Long-range ICN system design (simulated)

ICN: offload wireless, decrease latency, facilitate sleep

DSME: deterministic, reliable, low-power

RTTs 20–120 s challenge practical ICN forwarders
We aim for a delay-tolerant integration of LoRa with vastly different RTTs into a ‘regular’ ICN network.
We aim for a delay-tolerant integration of LoRa with vastly different RTTs into a ‘regular’ ICN network.

To achieve this, we:

1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
2. Introduce new gateway behavior and leverage recently proposed ICN extensions
3. Experimentally compare ‘Vanilla’ ICN and the extensions on IoT hardware
We aim for a delay-tolerant integration of LoRa with vastly different RTTs into a ‘regular’ ICN network

To achieve this, we:

1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
2. Introduce new gateway behavior and leverage recently proposed ICN extensions
3. Experimentally compare ‘Vanilla‘ ICN and the extensions on IoT hardware
We aim for a delay-tolerant integration of LoRa with vastly different RTTs into a ‘regular’ ICN network.

To achieve this, we:

1. Implement the 802.15.4 DSME MAC on top of LoRa PHY in the IoT OS RIOT
2. Introduce new gateway behavior and leverage recently proposed ICN extensions
3. Experimentally compare ‘Vanilla’ ICN and the extensions on IoT hardware
Outline

Problem Statement

System Overview

Implementation and Deployment

Evaluation

Conclusion & Outlook
Problem Statement
Dual Function of Interests

Sending Interest
▶ **Trigger** data transmission
▶ **Trigger** re-transmission on loss
▶ Mechanism is **unspecified**

Consumer Re-transmission
▶ Knowledge about app. time domain
▶ PIT timeout vs retrans. timer
▶ Requires on-path PIT state to expire
▶ But RTT requires long state for data

Pending Interest
▶ Implement **symmetric forwarding**
▶ Record downstream face for **data fwd.**
▶ Enable Interest **aggregation** (suppression)

Interest Lifetime (**NDN**)
▶ Default of 4 seconds is too **short**
▶ Forwarders might object **non-standard values**
▶ Routers might object spending **memory**
▶ Unpredictably changing RTT
Dual Function of Interests

Sending Interest
- **Trigger** data transmission
- **Trigger** re-transmission on loss
- **Mechanism is unspecified**

Pending Interest
- Implement **symmetric** forwarding
- Record downstream face for **data** fwd.
- Enable Interest **aggregation** (suppression)

Consumer Re-transmission
- Knowledge about app. time domain
- PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Interest Lifetime (**NDN**) (NDN)
- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT
Dual Function of Interests

Sending Interest
- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission
- Knowledge about app. time domain
- PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest
- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

Interest Lifetime (NDN)
- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT
Dual Function of Interests

Sending Interest
- Trigger data transmission
- Trigger re-transmission on loss
- Mechanism is unspecified

Consumer Re-transmission
- Knowledge about app. time domain
- PIT timeout vs retrans. timer
- Requires on-path PIT state to expire
- But RTT requires long state for data

Pending Interest
- Implement symmetric forwarding
- Record downstream face for data fwd.
- Enable Interest aggregation (suppression)

Interest Lifetime (NDN)
- Default of 4 seconds is too short
- Forwarders might object non-standard values
- Routers might object spending memory
- Unpredictably changing RTT
Alternative Retransmission Techniques

In-network retransmission (e.g., CCN-lite)
- Hop-wise retransmit by every forwarder
- No suffering from Interest aggregation
- Allows long-lived PIT state
- On-path nodes need to guess suitable timeouts

Retransmission suppression (e.g., NFD)
- Suppress same name Interest in suppression interval
- RTT estimation should permit reasonable consumer retrans. intervals
- Main purpose is prevention of DDoS attacks
- Long and vastly differing RTT still challenging
Alternaitve Retransmission Techniques

In-network retransmission *(e.g., CCN-lite)*
- Hop-wise retransmit by every forwarder
- No suffering from Interest aggregation
- Allows long-lived PIT state
- On-path nodes need to guess suitable timeouts

Retransmission suppression *(e.g., NFD)*
- Suppress same name Interest in suppression interval
- RTT estimation should permit reasonable consumer retrans. intervals
- Main purpose is prevention of DDoS attacks
- Long and vastly differing RTT still challenging
In-network retransmission (e.g., CCN-lite)

Guessing suitable intervals is **challenging**
Cannot expect forwarders to **honor** InterestLifetime

Deal with high and differing RTTs **explicitly**
No **interfering** with network layer InterestLifetime

Relieve forwarders from **domain** specific knowledge

- Main purpose is prevention of DDoS attacks
- Long and vastly differing RTT still challenging
System Overview
Gateway Node Requirements

Gateway operation
- Gateway serves one LoRa network
- Application agnostic caching forwarder
- Connect narrowband LoRa to broadband ICN network
- Leverage knowledge about last-hop delays → Adjust PIT timeout and InterestLifetime

Node registration
- Nodes register prefixes at gateway
- Gateway acts as a node custodian

Data provisioning by nodes
- Asynchronous data provisioning by unsolicited data
- Gateway only caches data from registered nodes
Gateway Node Requirements

Gateway operation
- Gateway **serves** one LoRa network
- Application **agnostic** caching forwarder
- Connect **narrowband** LoRa to **broadband** ICN network
- Leverage knowledge about last-hop delays
 → **Adjust** PIT timeout and InterestLifetime

Node registration
- Nodes **register** prefixes at gateway
- Gateway acts as a node **custodian**

Data provisioning by nodes
- Asynchronous data provisioning by **unsolicited data**
- Gateway only **caches** data from registered nodes
Gateway Node Requirements

Gateway operation
- Gateway *serves* one LoRa network
- Application *agnostic* caching forwarder
- Connect *narrowband* LoRa to *broadband* ICN network
- Leverage knowledge about last-hop delays
 → *Adjust* PIT timeout and InterestLifetime

Node registration
- Nodes *register* prefixes at gateway
- Gateway acts as a node *custodian*

Data provisioning by nodes
- Asynchronous data provisioning by *unsolicited* data
- Gateway only *caches* data from registered nodes
Two Delay-Tolerant ICN Protocols

1. Consumer-initiated

- Internet consumers request arbitrary content
- RICE [31] supports vastly longer and varying delays
- On 1st Interest:
 - Gateway checks if node falls under registered prefix
 - Gateway forwards Interest to LoRa node
 - Gateway returns estimated wait time
- On 2nd Interest:
 - Gateway satisfies request from content store (CS)
Two Delay-Tolerant ICN Protocols

2. Producer-initiated

- LoRa nodes place content in gateway cache, if registered
- Leverage phoning home use case of reflexive forwarding [46] (two nested Interest/Data exchanges)
- Gateway sends Interest to Internet node, indicating name
- Consumer returns reflexive Interest and retrieves content
- Optional data ACK terminates initial Interest
Protocol Overview

Delay-tolerant Data Retrieval

Fast network

Slow network

Reflexive Push

Fast network

Slow network

Interest | data | control func. | long delay | reg. lookup | do not cache | PIT timeout

Vanilla (1)

Baseline scenario, common parameter settings

InterestLifetime: 4 s

Retransmission interval: 1 s

Vanilla (2)

Delay-aware consumer

InterestLifetime: 60 s

Retransmission interval: 15 s

Vanilla (3)

Like Vanilla (2) but forwarders do adopt InterestLifetime
Vanilla (1)
- Baseline scenario, common parameter settings
 - InterestLifetime: 4 s
 - Retransmission interval: 1 s

Vanilla (2)
- Delay-aware consumer
 - InterestLifetime: 60 s
 - Retransmission interval: 15 s

Vanilla (3)
- Like Vanilla (2) but forwarders do adopt InterestLifetime

Protocol Overview

Delay-tolerant Data Retrieval

Reflexive Push
Vanilla (1)
- Baseline scenario, common parameter settings
- InterestLifetime: 4 s
- Retransmission interval: 1 s
Vanilla (1)
- Baseline scenario, common parameter settings
- InterestLifetime: 4 s
- Retransmission interval: 1 s

Vanilla (2)
- Delay-aware consumer
- InterestLifetime: 60 s
- Forwarders do **not** adopt InterestLifetime
- Retransmission interval: 15 s
Vanilla (1)
- Baseline scenario, common parameter settings
- InterestLifetime: 4 s
- Retransmission interval: 1 s

Vanilla (2)
- Delay-aware consumer
- InterestLifetime: 60 s
- Forwarders do **not** adopt InterestLifetime
- Retransmission interval: 15 s

Vanilla (3)
- Like **Vanilla (2)** but forwarders do **adopt** InterestLifetime
Implementation and Deployment
System Setup

LoRa Device

- Low-power, long-range sensor application
- ARM Cortex-M4 @ 64 MHz
 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway

- Same hardware (reduce impl. overhead)
- Two network interfaces:
 1. Wireless coordinator for LoRa
 2. Wired Ethernet for Internet

Internet

- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- Forwarder and consumer emulated in Mininet
System Setup

LoRa Device
- **Low-power**, long-range sensor application
- ARM Cortex-M4 @ 64 MHz
 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway
- **Same** hardware (reduce impl. overhead)
- Two network interfaces:
 1. Wireless coordinator for LoRa
 2. Wired Ethernet for Internet

Internet
- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- Forwarder and consumer emulated in Mininet
System Setup

LoRa Device
- **Low-power**, long-range sensor application
- ARM Cortex-M4 @ 64 MHz
 - 256 kB RAM/1 MB ROM
- Semtech SX 1276 LoRa radio
- Operated by RIOT and our network stack

Gateway
- **Same** hardware (reduce impl. overhead)
- Two network interfaces:
 1. Wireless coordinator for LoRa
 2. Wired Ethernet for Internet

Internet
- Emulated RIOT-native instances
- Virtual TAP bridge to gateway
- Forwarder and consumer emulated in Mininet

![Diagram showing network setup with LoRa Device, Gateway, and Internet interfaces.]
Evaluation
Completion Time and Resilience

Vanilla (1)

- Consumer retransmission
- Consumer retransmission (5% loss)
- In-network retransmission
- In-network retransmission (5% loss)
Completion Time and Resilience

Vanilla (1)

Expired PIT state prevents long RTTs

Futile retransmissions introduce notable overheads

- Consumer retransmission
- In-network retransmission
- Consumer retransmission (5% loss)
- In-network retransmission (5% loss)
Completion Time and Resilience

Vanilla (1)

Vanilla (2)

<table>
<thead>
<tr>
<th>Completion Time [s]</th>
<th>CDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
</tr>
<tr>
<td>20</td>
<td>0.04</td>
</tr>
<tr>
<td>30</td>
<td>0.06</td>
</tr>
<tr>
<td>40</td>
<td>0.08</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- **Consumer retransmission**
- **In-network retransmission**

- **Consumer retransmission (5% loss)**
- **In-network retransmission (5% loss)**
Application-aware consumers recover losses
Performance depends on ‘arbitrary’ poll interval
Susceptible to varying delays
Completion Time and Resilience

Vanilla (1)
Vanilla (2)
Vanilla (3)

- **Consumer retransmission**
- **In-network retransmission**
- **Consumer retransmission (5% loss)**
- **In-network retransmission (5% loss)**
Completion Time and Resilience

Vanilla (1)
Vanilla (2)
Vanilla (3)

- Consumer retransmission
- Consumer retransmission (5% loss)
- In-network retransmission
- In-network retransmission (5% loss)
Completion Time and Resilience

Vanilla (1) Vanilla (2) Vanilla (3)

1.0 1.2 1.4 1.6 1.8 2.0
0.950
0.975
1.000
1.025
1.050

Consumer retransmission
Consumer retransmission (5% loss)
In-network retransmission
In-network retransmission (5% loss)

Cannot expect forwarders to **adopt** arbitrary PIT timers

Long PIT state **unreliable** with consumer retransmissions

In-network retransmissions **require RTT knowledge**
Completion Time and Resilience

- **Vanilla (1)**
- **Vanilla (2)**
- **Vanilla (3)**
- **Delay-tolerant data retrieval**

Each graph represents the cumulative distribution function (CDF) of completion time in seconds. The x-axis represents the completion time, while the y-axis represents the CDF. Different lines in each graph indicate different retransmission strategies:

- **Orange line**: Consumer retransmission
- **Dashed orange line**: Consumer retransmission (5% loss)
- **Blue line**: In-network retransmission
- **Dashed blue line**: In-network retransmission (5% loss)
Completion Time and Resilience

Vanilla (1) Vanilla (2) Vanilla (3) Delay-tolerant data retrieval

0.16
0.8
1.0

CDF

Overcomes requirements of long PIT state and polling
Relieves consumers and forwarders of estimating RTT

Completion Time [s] Completion Time [s] Completion Time [s] Completion Time [s]

- Orange: Consumer retransmission
- Orange dashed: Consumer retransmission (5% loss)
- Blue: In-network retransmission
- Blue dashed: In-network retransmission (5% loss)
Completion Time and Resilience

Reversed transaction flow reflects IoT data generation

Facilitates reliable and timely transactions

Most efficient for low-power sensor node
Evaluation of communication- and system overhead in our paper!
Conclusion & Outlook
Conclusion & Outlook

In this work, we ...
... observed that interconnecting networks with vastly different RTTs is challenging
... found that ICN has potential to enable robust communication to edge networks
... contributed an implementation of ICN/DSME/LoRa and two ICN-style extensions

Our results show that ...
... our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability
... compared to Vanilla ICN, they enable targeted completion time and overcome polling
... ICN/DSME/LoRa provides low-power consumption with lifetimes >1 y (AA battery)

In future work we will ...
... implement a gateway estimator model including domain knowledge ...
... explore security including gateway trust, LoRa node authentication ...
... evaluate complex topologies including multi-gateway, node-to-node ...
... investigate additional use cases including RMI, firmware updates ...
In this work, we observed that interconnecting networks with vastly different RTTs is challenging. We found that ICN has potential to enable robust communication to edge networks. We contributed an implementation of ICN/DSME/LoRa and two ICN-style extensions.

Our results show that our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability. Compared to Vanilla ICN, they enable targeted completion time and overcome polling. ICN/DSME/LoRa provides low-power consumption with lifetimes >1 y (AA battery).

In future work we will implement a gateway estimator model including domain knowledge. We will explore security including gateway trust, LoRa node authentication. We will evaluate complex topologies including multi-gateway, node-to-node. We will investigate additional use cases including RMI, firmware updates.
Conclusion & Outlook

In this work, we...
...observed that interconnecting networks with vastly different RTTs is challenging
...found that ICN has potential to enable robust communication to edge networks
...contributed an implementation of ICN/DSME/LoRa and two ICN-style extensions

Our results show that...
...our Internet-consumer and LoRa-producer initiated pattern exhibit high reliability
...compared to Vanilla ICN, they enable targeted completion time and overcome polling
...ICN/DSME/LoRa provides low-power consumption with lifetimes >1 y (AA battery)

In future work we will...
...implement a gateway estimator model including domain knowledge...
...explore security including gateway trust, LoRa node authentication...
...evaluate complex topologies including multi-gateway, node-to-node...
...investigate additional use cases including RMI, firmware updates...
Thank You!

We support reproducible research.