
Freie Universität Berlin

Department of Mathematics and Computer Science

Institute of Computer Science

Diploma Thesis

Scalable Adaptive Group Communication on

Bi-directional Shared Pre�x Trees

Matthias Wählisch

waehl@inf.fu-berlin.de

July 2008

Examiner: Prof. Dr.-Ing. Jochen Schiller

Tutor: Georg Wittenburg, M.Sc.

mailto:waehlisch@ieee.org

Abstract

E�cient group communication within the Internet has been implemented by multicast. Unfortu-

nately, its global deployment is missing. Nevertheless, emerging and progressively establishing

popular applications, like IPTV or large-scale social video chats, require an economical data

distribution throughout the Internet.

To overcome the problem the limitations of multicast deployment, we introduce and analyze

BIDIR-SAM, the �rst structured overlay multicast scheme based on bi-directional shared pre�x

trees. BIDIR-SAM admits predictable costs growing logarithmically with increasing group size.

We also present a broadcast approach for DHT-enabled P2P networks. Both schemes are

integrated in a standard compliant hybrid group communication architecture, bridging the gap

between overlay and underlay as well as between inter- and intra-domain multicast.

Acknowledgments

Many thanks to Georg Wittenburg for his very valuable feedback throughout this diploma thesis.

Despite of his deep involvement in his own projects, he always had time for fruitful discussions.

It has been a real pleasure working with him.

I would like to thank Jochen Schiller and Günter Rote for their understanding of unexpected

problems.

Stephan Krause and Ingmar Baumgart are gratefully acknowledged for providing me with a

preliminary version of the Scribe enabled P2P network simulator OverSim at the beginning of

this project.

Last but not least, I would like to express my gratitude to Thomas Schmidt for continuous

discussions on this work, and his help to clarify my mind not only on probability a�airs. Beyond

this thesis, I would like to thank him for ten years of joyful collaboration. Thanks, for being

inspiring.

This work has been supported by the German Bundesministerium für Bildung und Forschung

within the project Moviecast. This funding o�ered the opportunity to work on this subject

without a thought on my subsistence � acknowledgements to the ministry for doing the right

thing.

Contents

1 Introduction 1

1.1 IP Layer Multicast . 1

1.1.1 Intra-Domain Multicast . 1

1.1.2 Inter-Domain Multicast . 2

1.1.3 Mobile Multicast . 3

1.2 Overlay Multicast . 4

1.3 Hybrid Multicast . 5

1.4 Problem Statement and Approach to Solution . 5

2 Related Technologies 7

2.1 Structured Overlay Networks . 7

2.2 Pastry . 8

2.3 Scribe . 10

2.4 The Hybrid Shared Tree Architecture . 11

3 Broadcast in DHTs 15

3.1 Introduction . 15

3.2 A Pre�x Flooding Approach . 16

3.3 Performance Analysis . 20

3.3.1 Analytical Results . 21

3.3.2 Simulation Results . 29

3.4 Related Work . 35

3.5 Discussion . 37

4 Pre�x-based Overlay Multicast 41

4.1 Introduction . 41

4.2 BIDIR-SAM � Scalable Adaptive Multicast on Bi-directional Shared Trees 42

4.2.1 The Core Protocol . 42

4.2.2 Optimization Options . 45

4.3 Performance Analysis . 48

4.3.1 Analytical Results . 49

4.3.2 Simulation Results . 58

4.4 Related Work . 71

4.5 Discussion . 72

5 Design of an Overlay Group Communication Architecture 75

5.1 Concept of a Common API for Structured Overlay Routing 75

5.1.1 The Dabek Model . 75

5.2 A Middleware for Structured P2P Group Communication 78

i

5.2.1 Current State of the Art . 79

5.2.2 Current Challenges . 80

5.2.3 A Common Network Stack for Group Communication 81

5.3 Design of the Hybrid Shared Tree Architecture 84

5.3.1 The Inter-domain Multicast Gateway . 84

5.3.2 Connecting Small Size Domains . 86

5.3.3 Connecting Large Size Domains . 87

5.4 Design of the Pre�x Flooding & BIDIR-SAM . 90

5.4.1 Tree Construction & Tree Maintenance for BIDIR-SAM 90

5.4.2 Data Distribution for Broadcast and Multicast 92

5.4.3 Routing Maintenance on Pastry . 93

6 Implementation 95

6.1 Introduction . 95

6.2 A P2P Simulation Framework: OverSim . 96

6.3 Implementation in OverSim . 96

6.3.1 Pre�x Flooding . 98

6.3.2 BIDIR-SAM . 99

6.4 Analytical Calculations . 101

7 Conclusion & Outlook 103

7.1 Achievements of this Work . 103

7.2 Future Tasks . 104

Bibliography 109

ii

List of Figures

2.1 Routing Table for Peer 101 and the Corresponding Spanning Pre�x Tree Using

a Binary Key Space. Next Hop Pointers are Highlighted by Dashed Lines. 9

2.2 A Source S Distributes Data to G + 1. The Key's Root G Forwards the Data

Towards all Receivers R. 11

2.3 The Hybrid Shared Tree Architecture . 12

3.1 A Binary Pre�x Tree . 16

3.2 DHT Node Placement in a Pre�x Tree � All Vertices Associated with Node 000111
are Highlighted. Adjacent Vertices Represent Pre�x Neighbors. 17

3.3 A Pre�x Tree Decomposes into Self-similar Subtrees Under Routing Initiated

from Source 000101 . 19

3.4 A Pre�x Tree with Inner Vertices De�ning the Root of Subtrees with Self-similar

Properties due to the Recursive Nature of k-ary Trees 22

3.5 Normalized Probability Distributions Ph,k(h − j) for the Replication Load Cut

at 100 in Full Pre�x Trees. Comparisons of a Small (k = 2), Regular (k = 16)
and Large (k = 64) Alphabet in a Realistic Key Space (h = 128). 23

3.6 Probability Distributions H
(p)
h,k for the Hop Count in Pre�x Trees With Varying

Homogeneous Edge Probabilities p and Fixed k = 16, h = 128 29

3.7 The Mean UDP Tra�c Volume per Peer in Pre�x Flooding and Scribe for Over-

lays of Di�erent Sizes . 30

3.8 Distribution of Packet Replication Comparing Pre�x Flooding With Scribe for a

Number of Peers Using a Fixed Key Length of 128 and a Varying Pre�x Alphabet

Size k . 32

3.9 Hop Count Distribution for an Overlay of Size N , k = 16 33

3.10 Hop Count Distribution for an Overlay of Size N , k = 4 34

3.11 Travel Time and Relative Delay Penalty for Pre�x Flooding & Scribe 35

4.1 BIDIR-SAM Routing Directed by a Binary Pre�x Tree 46

4.2 Mean Entries and Upper Bounds of the Multicast Forwarding Tables as a Func-

tion of Receiver Numbers for Alphabets of k = 4 and k = 16. 53

4.3 Normalized Distributions of the Mean Replication Load for Di�erent Group Sizes

g and Pre�x Alphabets k. 54

4.4 Mean Injection Level and Normalized Message Numbers of the Multicast Join/Leave

Signaling as a Function of Receiver Rank for Alphabets of k = 4 and k = 16. . . 55

4.5 Normalized Hop Count Distributions for k = 4 and k = 16. 57

4.6 Fraction of Multicast Group Members among Forwarders in a Network of N =
10.000 Nodes for k = 4 and k = 16. 58

iii

4.7 Mean Multicast Forwarding Entries per Overlay Node for Pre�x Alphabet Sizes

k and Varying Overlay Dimensions . 59

4.8 Distribution of Multicast Forwarding Entries per Overlay Node for Pre�x Alpha-

bet Size k = 16 and Varying Number of Receivers, Cut at 50 Entries With a

Detail View for Scribe . 60

4.9 E�ective Joins per Receiver . 61

4.10 Mean Join Injection Level for BIDIR-SAM With Selected Error Bars for Pre�x

Alphabet Sizes k . 61

4.11 The Mean UDP Tra�c Volume per Peer in BIDIR-SAM and Scribe for Overlays

With 10.000 Nodes . 62

4.12 Packet Replication Distributions for a Varying Receiver to Peer Ratio, k = 16 . . 63

4.13 Distribution of Packet Replication Comparing BIDIR-SAM with Scribe for a

Varying Ratio of Receivers to Peers Using a Fixed Key Length of 128 and k = 16
in a 10.000 Node Overlay . 65

4.14 Distribution of Packet Replication Comparing BIDIR-SAM with Scribe for a

Varying Ratio of Receivers to Peers Using a Fixed Key Length of 128 and k = 4
in a 10.000 Node Overlay . 66

4.15 Hop Count Distribution for an Overlay of Size N and Di�erent Numbers of Re-

ceivers, k = 16 . 67

4.16 Hop Count Distribution for an Overlay of Size N and a Varying Pre�x Alphabet

Size k for 25 Receivers . 68

4.17 Fraction of Multicast Receivers Acting as Data Forwarder for Di�erent Overlay

Sizes, k = 16 . 69

4.18 Normalized Multicast E�ciency for Di�erent Overlay Sizes N and Pre�x Alpha-

bets k . 70

5.1 A Compound P2P Layer According to the Dabek Model [27] With Typical Ap-

plication Classes. Interactions Between the Layer Components are Highlighted

by Arrows. 76

5.2 Generic Stack Architecture for Cooperated Underlay & Overlay Multicast 78

5.3 An Application Layer Multicast Middleware Embedded in a P2P Stack 82

5.4 The Hybrid Shared Tree Network Stack Highlighting the Overlay Components . . 84

5.5 Schematic View of General IMG Scenarios . 85

5.6 Two Small Size Multicast Domains Connected via an Overlay 86

5.7 Two Large Size Multicast Domains Covering Multiple Layer 3 Networks (Dashed

Lines) . 87

5.8 Schematic View of the Join Call Procedure . 91

5.9 Schematic View of the Send Call Procedure for BIDIR-SAM 92

5.10 Schematic View of the Send Call Procedure for the Pre�x Flooding 93

6.1 The Network Stack for a Simple OverSim Node Highlighting an Application on

Tier 2 of the P2P Stack . 97

6.2 A BIDIR-SAM Network With 50 Peers Highlighting the Multicast Stack. Multi-

cast Receivers and Source are Colored in Red and Yellow Respectively. 98

iv

1 Introduction

When the Internet was still in its early, premature state of development, the idea arose to

extend unicast capabilities by a multicast group service [5]. The corresponding distribution

function allows to inject data once into computer networks, but feed multiple receivers of the

same stream. Packets will be automatically duplicated at suitable branching points along the

paths from the source to the listeners, thereby economizing transmission capacities.

Multicast communication techniques have been under debate since Stephen Deering intro-

duced the host group model to the Internet layer [29, 30]. Until today, the initial approach of

Any Source Multicast (ASM) routing remained hesitant to spread beyond limited, controlled

environments. Meanwhile, new demands for group communication are arriving with increasing

intensity, e.g., multimedia streaming and conferencing in mobile environments, service discovery

in service-oriented architectures or self-con�guring components in autonomous networks.

However, the deployment of IP multicast in general has been slow over the past 15 years, even

though all major router vendors and operating systems o�er a wide variety of implementations

to support multicast [31]. A fundamental dispute arose on multicast concepts in the end-to-

end design principle by Saltzer et al. [84], questioning the appropriate layer, where group

communication service should reside on. For several years, the focus of the research community

turned towards application layer multicast, and only recently reconsidered the relevance of IP

layer multicast.

In the past, vendors and technicians, trying to promote multicast functionality, focused their

marketing arguments on network e�ciency and unintentionally degraded its paradigm to uni-

directional, broadcast-type services. Since then multicast su�ers from a reputation of being

merely useful for non-interactive, 'archaic' mass distribution tasks. Large-scale interactive group

applications like massive multiplayer games, conferencing in restricted regimes or complex col-

laborative environments have only recently drawn attention. In parallel, mobile multimedia

group communication appeared as an emerging applications �eld. Multicast services in mobile

environments may soon become indispensable, when multimedia distribution services such as

DVB-H and IPTV will develop as strong business cases for portables. As IP mobility will unfold

dominance and e�ciency in costly radio environments, the evolution of multicast protocols will

naturally follow mobility constraints [12].

In the following, we discuss the current state of the art of IP multicast, its potentials, problems

and solutions. A brief introduction in overlay multicast technologies is given.

1.1 IP Layer Multicast

1.1.1 Intra-Domain Multicast

A large number of today's enterprise networks provide multicast services within their local

domains to facilitate administrative tasks as well as shared group applications. This is indicated

by the wide availability of intra-domain multicast protocols such as IGMP [19], MLD [100],

1

1 Introduction

DVMRP [104, 74], PIM-DM/SM/SSM [3, 39], Bidir-PIM [42] in routers and end systems and

the fairly uniform presence of multicast capabilities in lower layer protocols, i.e., in IEEE 802.3

Ethernet, 802.11 WLAN, 802.16 WIMAX [49] or in 3GPP MBMS [1] and DVB-H [34].

This deployment success on the one hand can be attributed to the large number of nodes

installed in common enterprise domains, which immediately pro�t from multicast distribution

services, on the other hand complex routing services are much easier established, controlled

and also restricted within a single administrative domain. Multicast admission and scoping in

general, and prevention of misuse in DDoS attacks in particular, can be managed with reasonable

e�ort at intra-domain level, while these tasks turn into critical challenges in an inter-provider

context. Furthermore higher spare capacities of routers and systems at Internet edges allow

for concurrent operation of multicast management burdens, while at the same time scaling

limitations inherent to most of the present protocols remain invisible within most enterprise

networks.

Nevertheless, intra-domain multicast routing is not considered complete, but remains an

active research �eld. The major reason for discontent results from the handling of data-driven

multicast distribution states. They are required at the routing layer, which breaks the paradigm

of stateless forwarders and opens the door for �ow-state attacks directed against the routing

infrastructure. Recent work on bi-directional PIM by Handley et al. [43] has advanced this

debate by utilizing a group-speci�c shared tree within limited domains. States for this bi-

directionally operational, but not uniformly optimal distribution tree are established at multicast

activation and group creation and thus fully decouple from the data plane.

1.1.2 Inter-Domain Multicast

In contrast to the success at an internal level, inter-domain multicast deployment largely failed.

Inexplicit bene�ts, complexity and scalability issues with multicast BGP-4 extensions, robust-

ness and security concerns, as well as the threat of intransparently interwoven service models

kept Internet Service Providers (ISPs) from adding multicast burdens onto their already notori-

ously overloaded core routers. At present, the key issues for inter-domain multicast deployment

may be seen as:

Control on groups will allow ISPs to explicitly restrict (or charge for) distribution services,

and thus must be considered an important part of a consistent business model.

Controlled load on backbone routers in terms of table spaces, computational and signalling

demands will be required for a predictable service quality.

Scalable protocols build the essential foundation for a large-scale deployment.

State aggregation within shared trees will be a technical demand to control the router load.

Forward routing will be of vital importance due to asymmetric backbone routes. Many mul-

ticast routing protocols depend on Reverse Path Forwarding and thereby erroneously

assume symmetric routes.

Explicit bene�ts will provide the reasons for ISPs to deploy multicast. Aside from a simple

gain analysis, arising applications or new, e.g., mobile services may stimulate appropriate

business cases for multicast.

2

1.1 IP Layer Multicast

Recent advancements led IP multicast routing in divergent directions. Source Speci�c Mul-

ticast (SSM) [11, 46] broke with Deering's open host group model to achieve greatly simpli�ed,

domain-transparent routing. In contrast to Any Source Multicast (ASM), optimal multicast

source trees are constructed immediately from subscriptions at the client side towards the mul-

ticast sender, without using network �ooding or rendezvous points. Source addresses are to be

acquired by out of band channels, limiting its applicability to service-aware parties. By this

lack of generality, SSM remains unsuitable for self-con�guration tasks of distributed systems.

Moreover the single source model does not allow for state aggregation in shared trees, while the

common PIM-SSM routing [39] uses Reverse Path Forwarding for Internet backbone traversal.

BGMP [95] at the Internet backbone attains a somewhat complementary role of Bidir-PIM by

supporting bi-directional shared trees between domain-level rendezvous points, thereby overcom-

ing limitations of scalability. However, BGMP continues to rely on route symmetry throughout

the Internet backbone.

Only two years ago at SIGCOMM, Ratnasamy et al. [76] again urged for the adaptation of an

any source multicast service on the IP layer. The authors propose BGP extensions to exchange

group membership announcements decoupled from multicast route discovery. Routing follows a

forward path approach achieved by a tree-based source routing on top of BGP. As BGP routing

tables are unaware of global contexts, the authors need to encode the entire distribution tree

within forwarded packets. While incorporating original, valuable ideas, this monolithic Free

Riding Multicast (FRM) protocol su�ers from the drawbacks of not only requiring a complete

change of the BGP layer, but also placing the heavy burden of evaluating the distribution tree

in the Internet core and performing correspondent source routing.

1.1.3 Mobile Multicast

Multicast mobility management has to accomplish two distinct tasks: handover operations for

mobile listeners and senders. While many solutions exist for roaming receivers [81], [88], very

few schemes have been speci�ed for mobile multicast sources. Following a handover, multicast

data reception can be fairly easily regained by a remote subscription approach [52], possibly

expedited by agent-based proxy schemes [86]. In contrast, a multicast sender either de�nes the

root of a source-speci�c shortest path tree (SPT), distributing data towards a rendezvous point

or receivers, or it forwards data directly down a shared tree. Aside from tunneling or shared

trees, forwarding along source-speci�c delivery trees will be bound to a topological network

address due to reverse path forwarding (RPF) checks. At the same time a mobile sender

must not change source address while re-associating in a di�erent network, since addresses are

associated on the application layer, e.g., with RTP media streams.

Within intra-domain multicast routing, the employment of shared trees may considerably

relax mobility-related complexity. Relying upon a static rendezvous point, a mobile source

may continuously submit data by encapsulating packets with its previous topologically correct

or home source address. Constraints even diminish, when bi-directional PIM is used. Intra-

domain mobility is transparently covered by bi-directional shared trees, which are built from a

'virtualized rendezvous point', eliminating the need for tunneling data to reach the rendezvous

point.

However, issues arise in inter-domain multicast scenarios, whenever noti�cation of source

addresses is required between distributed instances of shared trees. Problems increase with

Source Speci�c Multicast (SSM) operated on the IP-layer, as it requires active subscription to

3

1 Introduction

contributing sources, thereby relying on topologically correct addresses. On the occurrence of

handovers and in the presence of source �lters, any mobile SSM routing protocol is required

to transform a given source-speci�c (Sold, G) state into (Snew, G), while listening applications

continue to receive multicast data streams admitting a persistent source address S.

Facing multicast deployment problems, it is desirable that any solution to mobile multicast

should leave routing protocols unchanged. Mobility management in such deployment-friendly

schemes should preferably be handled at the Internet edges, preserving the core routing infras-

tructure in mobility-agnostic condition. Facing the current state of proposals, the urgent search

for such a simple, infrastructure-transparent solution remains, even though there are reasonable

doubts about whether this can be achieved for SSM.

The search of a solution for a mobility agnostic multicast routing protocol was the original

motivation for this thesis and directed us to overlay multicast.

1.2 Overlay Multicast

In recent years the Internet community experienced two signi�cant disruptions. The advent and

overwhelming success of Napster and successors from 1999 on demonstrated an imperative desire

of Internet users to take advantage of transparent end-to-end application services. The Internet,

originally designed as a logical end-to-end overlay on top of heterogeneous physical networks,

apparently had failed to serve these needs in its current server-centric and NAT-burdened state

of deployment.1

In the year 2001, when Napster failed legally and early versions of Gnutella broke down

technically, proposals for using an abstract name space to combine nodes and content emerged,

which organized within Distributed Hash Tables (DHTs). The introduced solutions admit the

routing geometry of rings as in Chord [93], trees as in Tapestry [107] and Pastry [82] or a

d-dimensional toroidal geometry as in CAN [77, 79]. Their common concept of distributed

indexing by Plaxton et al. [72], which had been initially developed for distributed memory

computer architectures, stimulated many of ideas and continues to inspire routing in Mobile Ad-

hoc (MANET) networks [73], [106], as well as to heat up the debate on a clean slate reinvention

of the Internet [37].

Structured peer-to-peer systems o�er multicast services in an infrastructure-agnostic fashion.

They are reasonably e�cient and scale over a wide range of group sizes. However, they do

not allow for layer 2 interactions and thus do not facilitate unrestricted scaling in shared end

system domains. Stability issues for tree-based overlay multicast under churn arise as well,

as the departure of branching nodes close to the root may have disastrous e�ects on data

distribution. These drawbacks may be mitigated by hybrid approaches, where overlay multicast

routing only takes place among selected nodes, which are particularly stable and form a virtual

infrastructure. Similar initial propositions have recently been introduced to IRTF [16]. Such

adaptive schemes of cooperative routing in underlay and overlay bear the potential to optimize

stability and performance, while sustaining ample �exibility for deployment.

The performance gap between IP and application layer multicast widens, when mobility is

introduced. Frequent hando�s and topological re-arrangements degrade the stability of distri-

bution trees and the e�ciency of proximity selection. Garyfalos & Almeroth derived from fairly

1Characteristically, an ongoing combat arose of P2P suppression on the infrastructure management side and

barrier evasion on the application layer.

4

1.3 Hybrid Multicast

generic principles e�ciency measures for source speci�c multicast in di�erent metrics [40]. Over-

lay trees uniformly admitted degradations up to a factor of four over native IP layer multicast

in the presence of MIPv6 mobility management. To overcome mobility obstacles, the authors

introduce the Intelligent Gateway Multicast, which assists in reactive handovers at the network

access.

1.3 Hybrid Multicast

Hybrid multicast schemes inherit major e�ciency from the IP layer, while sustaining ease in de-

ployment and infrastructure-transparency from selected group distribution in overlay networks.

Such approaches di�erentiate the end-to-end design argument with respect to the inhomoge-

neous nature of the global Internet: While customer-oriented end system networks, which are

mainly built on top of multicast enabled subnetwork technologies, do signi�cantly pro�t of uti-

lizing network layer multicast services, the �ow-oriented transition networks of the Internet core

do not.

The design of interconnecting end system domains on the basis of a structured overlay gives

full multicast admission control to local operators and may be interpreted as globally dis-

tributed service peering. It will enable inter-domain distribution trees to multicast group ser-

vices, which remain invisible to the Internet core, while inheriting the full potential of scalability,

self-organization, redundancy and error resilience from the overlay network protocols in use.

The recently sketched Hybrid Shared Tree architecture [102] follows the lines of the evolu-

tionary construction scheme of the Internet. Its focus originates from a customer network or an

ISP domain, where multicast services are locally deployed. Multicast service exchange is then

expected to be implemented like unicast peering, in a dedicated but isolated step. It will operate

following the activation of a gateway service, which interconnects the local multicast routing

with the distributed peering on the structured overlay. Note that a separation of inter-domain

multicast from unicast routing will lead not only to a simpli�ed, more stringently structured

approach, but will also segregate malfunctions due to miscon�guration or component overload.2

1.4 Problem Statement and Approach to Solution

Currently, multicast is not globally deployed. The aim of this thesis is to provide new ideas

and solutions in the context of hybrid group communication networking, which may enforce

global multicast and thus help towards e�cient data distribution within the Internet. In this

thesis we are focusing on two main ingredients for hybrid multicast: An e�cient large-scale

overlay multicast protocol suitable for inter-provider as well as end system multicast, and an

underlay-overlay aware group communication network stack.

Such a network stack will enable router vendors as well as application developers to implement

multicast transparent group services. Software equipped with this stack allows end users to

build up anywhere widely spread multicast groups without dedicated infrastructure support.

Additionally, a relay service in concordance with the hybrid shared tree architecture should be

designed. This component forwards data automatically between underlay and overlay multicast

2Caused by experiences with early PIM-SM implementations, there is a common fear of multicast to degrade

the unicast forwarding.

5

1 Introduction

networks. With respect to an easy deployment, it accounts for di�erent multicast scenarios on

the one hand, and current Internet standards on the other hand.

Bridging the gap of the inter-domain multicast deployment problem using overlay multicast

imposes special demands for the protocol in use. First and foremost the protocol needs to

balance replication load between data forwarders with respect to peering fairness. Assuming

IPTV scenarios with provider centered sources, large receiver groups for one TV channel occur

easily when public attractive events, e.g., soccer world cup, will be broadcasted. A single

overloaded peer results in a bottleneck. Interferences will generate higher jitters or packet loss.

Both a�ect video compression schemes and thus annoy users.

Providers possess a strong interest in calculating load on network components before rollout.

Further on, the performance of the overlay protocol should be predictable, such that hybrid

infrastructure components can grow with upcoming requirements. For an inter-provider deploy-

ment it needs to scale with very large groups.

In this thesis we present two group communication protocols for overlay networks. The �rst

one is pre�x �ooding, a simple broadcasting mechanism that operates in the pre�x space of

structured overlay networks without signaling. Starting from simple models of recursive k-ary

trees, we analytically derive distributions of hop counts and the replication load. Extensive

simulation results con�rm our observations.

The second protocol we introduce is BIDIR-SAM: The �rst multicast routing protocol for

structured overlay networks operating on a bi-directional shared pre�x tree, which permits

source-speci�c paths. Optimized tree construction and data transmission throughout the un-

derlay are key controls for e�cient group communication in structured overlay networks. Our

pre�x-guided group management strictly adheres to forward-directed establishment of distri-

bution trees. BIDIR-SAM omits any dedicated infrastructure component like a rendezvous

point. It exhibits strictly predictable logarithmic costs and is best-suited for large-scale group

communication.

Comparisons of the pre�x �ooding and BIDIR-SAM are drawn to Scribe, taken as a general

reference model for group communication according to the shared, rendezvous-point-centered

distribution paradigm.

The remainder of this thesis is organized as follows: In chapter 2 we discuss basic related tech-

nologies. Chapter 3 introduces and analyzes pre�x �ooding, a broadcast scheme for structured

overlay networks. Our work extends the results of Castro et al. [23] by a generalization of the

protocol and its theoretical prove as well as by a thoroughly analytical study and simulations.

We introduce and evaluate our overlay multicast routing protocol, BIDIR-SAM, in chapter 4.

The evaluation is based on a very detailed theoretical analysis and simulations. In chapter 5 we

explain our overlay group communication architecture accommodating the pre�x �ooding and

BIDIR-SAM. This architecture includes the design of the hybrid shared tree components and

the middleware for structured P2P group communication. We present our protocol implemen-

tations within a P2P simulator in chapter 6. Chapter 7 summarizes our results and gives an

outlook for future directions.

6

2 Related Technologies

2.1 Structured Overlay Networks

Distributed Hash Tables

Locating resources is a common task in computer networks and distributed systems, and the

motivation why name services like the DNS have been foreseen. Resources, i.e., data or informa-

tion, may be arranged directly in a decentralized store, but also indirectly via pointers indicating

their location. Based on a unique resource identi�er, the device holding the data then needs to

be resolved. For this reason, network members have to provision a mapping between device and

resource descriptor. The simplest implementations of such a search algorithm either �ood the

information within the entire network or save the tuple on a centralized server. Both approaches

do not scale with the number of nodes. Flooding allows to minimize memory requirements, but

the resulting communication costs increase at least linearly. Centralized approaches operate

oppositely. Therefore, a common solution in distributed systems is the pre-structuring and

dissemination of the required information, such that they can be located in logarithmic time.

Distributed Hash Tables (DHTs) implement e�cient data storage over multiple nodes on

the one hand, and its fast localization on the other hand. The most prominent examples

are Chord [93], Pastry [82] and CAN [77, 79]. The common concept of DHTs comes from

distributed indexing inherited from distributed memory architectures in the 80ies. Commonly,

memory consumption and lookup complexity range in the order of O(logN) with N number of

nodes. Each node within a DHT maintains information corresponding to a resource descriptor.

Determining the storage location is based on the following idea: A DHT node and a resource

will be assigned to an address from the same (ordered) identi�er space. The DHT node with

an adjacent address to the resource ID is responsible for the stored data. Adjacency is de�ned

on a DHT speci�c metric. The node is called the key's root. Consequently, the destination for

a resource request can be calculated based on the descriptor ID.

Internet devices have an address, and application data descriptors are decoupled from host

identi�ers. To ful�ll the DHT requirement of an identical address space, both, the original

resource name and a unique host token will be mapped to a set of keys via the same hash

function. Thus, network nodes participating in a DHT obtain an additional (hash) address,

which represents an ID on the application layer.

To locate distributed keys, the DHT creates an abstract structure independent of the un-

derlying network. This network will be used to forward a key request. The DHT connects at

least two nodes to application layer paths based on their DHT identi�er. The actual topology

depends on the individual DHT. A network arises on top of the underlying layers, an overlay

network.

Routing tables will be calculated for the logical network. Overlay DHT nodes, thus, own

either only information to forward keys towards other nodes or additionally a mapping between

resource key and data item.

7

2 Related Technologies

Hence, a DHT represents a data structure storing distributed keys and includes simultaneously

an algorithm, which implements forwarding between the nodes of the DHT to lookup the key.

A DHT is supplemented by a communication protocol, which maintains the data structure and

exchanges the required routing information.

Key-based Routing

Key-based Routing (KBR) delivers a message destined for a given key to a the key's root.

In contrast to DHTs, the routing request does not need to result in the retrieval of a stored

key-value-pair, but only to reach the key's root. The KBR, thus, implements a more generic

message routing and passes on the conceptual distinction between (resource) key and overlay

(node) ID. However, as discussed above, each DHT implements inherently a key-based routing

scheme. Colloquially, the terms DHT and KBR are often used interchangeably.

A KBR layer provides applications with a structured overlay on top of a network layer proto-

col. As no overlay node plays a distinct role, the equal members will be called peers. Each peer

owns a key as overlay address. The forwarded messages are application speci�c. In contrast to

network layer routing, the KBR scheme guarantees, that each address from the identi�er space

is associated with a peer according to the scheme of locating the key's root in DHTs.

In the current Internet, KBR approaches are deployed on top of an existing global underlay

routing. In general, there is no direct correspondence between the node's location in the un-

derlying topology and its placement within the overlay, the latter following the properties of

hash functions. Hence, peers, which are far away in the overlay, may be close to each other

in the real network, and the other way around. A KBR scheme not considering this case may

induce two penalties: On the one hand, it may imposes delays as unnecessary hops are taken

with respect to the native routing. On the other hand, it may stress native network connections

with needless transmissions of the same data over the same link based on cross-routing between

peers. This disadvantages grow worse in group communication scenarios, as packets have to be

distributed to multiple destinations.

However, there are approaches, which account for properties of the underlying network using

the �exibility of key-based identi�ers. In the following we will discuss a KBR/DHT substrate

implementing proximity neighbor selection in its forwarding rules.

2.2 Pastry

In contrast to underlay unaware DHTs, Pastry [82] accounts for the distance of two nodes in the

physical topology while constructing its overlay routing table. This distance can be evaluated

according to di�erent metrics, such as RTT, hops or packet loss. Thus, a peer does not only

forward a message to an adjacent node in the logical network, but also selects the peer with the

minimal delay with respect to the physical topology. For this purpose, a Pastry node maintains

a pre�x-based routing table. Each pre�x covers a set of keys. Thus, multiple overlay nodes

potentially exist as destinations for message forwarding.

The main concept of Pastry provides a peer with an aggregated view of the overlay based on

pre�xes, which are used for message routing. As visualized in �gure 2.1, peers can be connected

by a pre�x tree. This structure is constructed by labelling recursively inner vertices with the

longest common pre�x of their children. Leaves represent overlay nodes. Inner vertices de�ne

8

2.2 Pastry

1*

*

0*

11* 10*

111 101

001 1
0 111

100 1

100 001

Figure 2.1: Routing Table for Peer 101 and the Corresponding Spanning Pre�x Tree Using a

Binary Key Space. Next Hop Pointers are Highlighted by Dashed Lines.

the root of pre�x subtrees. Forwarding can be performed along the following idea: A node sends

a message to the subtree root, which shares digits with the destination. The message will be

intercepted by a member of this subtree and internally be passed towards the key's root. Thus,

a peer only needs to store one vertex of each subtree within its routing table (cf. �gure 2.1).

The selection process follows Pastry's proximity metric.

In the following, we will describe the routing table and forwarding algorithm of Pastry in

detail and more formal way.

To gain insight into the Pastry routing, we �rst clarify the routing table structure. Let k

denote the base of the overlay identi�er space {Kn}, and h denotes the maximal number of digits
for an identi�er. Additionally, we denote prefix(m,K) as a function mapping the �rst m digits

of a value K with prefix(m, ∗) := NULL. Then a Pastry routing table consists of at most h rows

and k columns. Each cell in the i-th row and j-th column (1 ≤ i ≤ h, 1 ≤ j ≤ k) represents

the following semantic: Based on a transformation T (i, j), the table index approximates a

Pastry overlay key. The table entry contains the corresponding underlay address. The index

transformation creates pre�xes with respect to the overlay node identi�er. For a peer with ID

K ∈ {Kn}, the transformation is given by:

T (i, j) = prefix(i− 1,K) · jk, with z · jk := z concatenated with j in base k. (2.1)

Thus, each column of a row i corresponds to the �rst i−1 digits of the peer's overlay identi�er.
Further on, for each row there exists a column l, which equals the �rst i digits of the peers ID

(T (i, l) = prefix(i, K)). This cell can be ignored, as it references the node itself. Based on the

calculation rule (2.1), each entry can be accessed in constant time. The routing table includes

O(k · logkN) entries asymptotically.
The routing table entries are selected according to the following scheme: For a pre�x P with

length |P|, all overlay members carrying an ID L are available if:

prefix(|P|,L) = P, with L ∈ {Kn}.

9

2 Related Technologies

Pastry chooses the overlay member with the minimal underlay latency to the peer. This process

is called proximity neighbor selection and seamlessly adapts to underlay performance without

interfering with the key based routing logic.

Figure 2.1 visualizes a sample routing table of node 101 for k = 2 and h = 3.1 The �rst

column of the �rst row represents pre�x 0*, column two refers to the node itself. As next hop

for all keys starting with 0, Pastry node 101 has chosen peer 001. Entries in the second row

conforms to the second digit of an overlay key. Iterating over the pre�x alphabet, but �xing the

�rst digit, the �rst column is pointing to 101 itself and the second column includes a peer with

ID 11*. Hence, the last row contains all direct neighbors.

Whenever a Pastry node receives a routing request, it selects the table cell with a pre�x that

is at least one digit longer than the pre�x that the key shares with the peer's ID (cf. rule (2.1)).

If no such node is found, the message is forwarded to a node whose overlay ID shares a pre�x

with the key as long as the current node, but is numerically closer to the key than the peer's

ID. Thus, in each routing step the key will be forwarded to a Pastry node, whose identi�er is

closer to the key. The routing algorithm terminates when the key's root has been found.

To enhance the e�ciency of the routing scheme, each Pastry node additionally maintains a

Leaf Set. This includes a constant number of direct neighbors, which are located to the right

and left of the peers node ID. Hence, a larger leaf set results in a higher rate of direct peer

access.

The Pastry routing table maintenance is improved by a neighborhood set. In contrast to the

leaf set, this includes overlay members close to the peer with respect to the underlay proximity

metric. The set is not used for the message forwarding itself, but to feed the routing table.

2.3 Scribe

Scribe implements an overlay multicast scheme on top of Pastry [83, 22]. Pastry is used as

underlying (unicast) key-based routing, guiding a proximity-aware forwarding. Scribe operates

on a multicast distribution tree, which is constructed in correspondence to the shared tree

approach of the native multicast routing protocol PIM-SM [39]. Multicast sources send their

data to a dedicated rendezvous point, the root of the distribution tree (cf. �gure 2.2. This root

node is directly derived from the multicast group ID. Forwarding states are stored in a multicast

children table in parallel to Pastry's routing table.

Scribe operates in detail as follows: A multicast source creating a group delegates a create

message including security credentials to the Pastry instance. The message is destined to the

overlay multicast group address, i.e., an identi�er created by the KBR hash function. Pastry

initiates regular overlay routing towards the numerical closest peer. The Pastry instance of the

key root forwards the message towards Scribe, which checks the credentials. On success, the

corresponding group will be activated and the peer acts as rendezvous point (RP): Each overlay

node is now enabled to send its multicast data to the RP, which distributes the data, if the

credentials hold.

The multicast distribution tree will be erected by receiver subscriptions. An overlay multicast

listener sends a join message to the known multicast group address based on Pastry routing.

Overlay nodes on the route from the receiver to the rendezvous point intercept and forward

this message to the local Scribe instance. The Scribe instance adds the previous hop, i.e., its

1For simpli�cation we store the overlay ID instead of the IP address.

10

2.4 The Hybrid Shared Tree Architecture

001∗

00∗

0001∗

000101

1∗

111∗

∗

R
R

G

R

S

000111001101111101 100111111001 100101

100∗

R

Figure 2.2: A Source S Distributes Data to G+1. The Key's Root G Forwards the Data Towards
all Receivers R.

overlay key and IP address, to the local multicast children table, if there is not already an entry

for it. The message will be passed back to Pastry only if no previous group member has been

identi�ed in the table. Hence, a path from a receiver to the RP will subsequently be built by

children pointers. Branching occurs whenever multiple joins for one group arrive at the same

peer. Henceforth, publish messages can be distributed via the rendezvous point towards the

receivers by forwarding data based on the children table entries.

The multicast tree will be deconstructed using the Scribe leave message. To leave a group a

peer sends this state update towards the rendezvous point. Intermediate forwarders distribute

the leave, if there are no other entries in the corresponding children table. Thus, multicast

branches will be pruned.

2.4 The Hybrid Shared Tree Architecture

In this section we will introduce our previous work, the Hybrid Shared Tree (HST) [102], a hybrid

architecture designed to enable global multicast peering at the ISP or enterprise level, while

sustaining end system transparency in utilizing well-established group distribution services.

The basic concept of HST preserves multicast routing and lower layer packet transmission

within local multicast domains, while bridging the inter-domain gap with the help of a structured

overlay network to overcome the multicast deployment problems [31].

In combining a well established DHT with a new overlay multicast routing scheme, this

approach addresses in particular the following design objectives:

• Provide scalability, robustness and inter-domain transparency for shared distribution trees;

• Detach multicast routing from the Internet core and restrict the backbone infrastructure

to plain unicast forward routing;

11

2 Related Technologies

Internet Backbone

IMG

IMG

IMG

IMG

IMG

IMG

abcf432 32.4.3.1
abde004 141.4.50.3
cadb341 154.39.8.8

abde004 141.4.50.3
acf43de 21.7.2.4
cadb341 154.39.8.8

abcf432 32.4.3.1
abde004 141.4.50.3
acf43de 21.7.2.4

DHT Overlay

Multicast Domain

Multicast Domain

Multicast Domain

Figure 2.3: The Hybrid Shared Tree Architecture

• Decouple group membership registration from route discovery;

• Decouple multicast state management from the data plane;

• Grant control on group admission to local operators;

• Open a lightweight deployment perspective for mobile multicast services.

Architectural Overview

The Hybrid Shared Tree architecture introduces the Inter-domain Multicast Gateway (IMG)

as a new architectural entity, which provides a gateway functionality between the overlay it

is a member of, and the multicast routing at the intra-domain underlay that it resides in (cf.

�gure 2.3). Those gateways will participate in multicast tra�c originating from its residential

network, which it will forward into the overlay according to the distributed multicast receiver

domains of this group, and will also advertise group membership and receive data according to

any subscription from its domain. On the overlay, the IMGs will jointly operate a bi-directional

overlay multicast routing scheme, which we will present in detail in section 4.2.

The IMG may be positioned anywhere within the multicast domain, but need to provide a

protocol interface to the locally deployed multicast routing. To avoid zigzag transmission, the

IMG may be situated at the domain border router, though, in the example of a PIM-SM or Bidir-

PIM domain, the IMG could also be co-located with the rendezvous point or the rendezvous

address. Note that the IMG function may either be built as a dedicated system entity or may

consist of an additional intelligence on existing routers.

Activation of inter-domain multicast gateway services requires only a small amount of selected

information for bootstrapping, i.e., an arbitrary contact member of the structured overlay,

and authentication and authorization credentials, if applicable. The IMG remains under the

administrative control of the local network operator, who may restrict admission, scoping and

QoS characteristics of the group tra�c �owing in and out of the intra-domain. Aside from

general multicast peering policies, a service provider is thus enabled to implement �rewall-type

of packet �lters at, or co-located with, these multicast gateways.

12

2.4 The Hybrid Shared Tree Architecture

This architecture supports �exible operations in several ways. A domain operator is enabled

to connect to several multicast overlays in parallel, may choose to replicate IMGs for load

balancing or redundancy purposes or may transparently take advantage of the fail-safe unicast

peering realized by multi-homed network connectivity. Replication operations will be seamlessly

empowered by the self-organization capabilities of the DHT overlay.

A Note on Tunneling

Multicast islands may also be interconnected by underlay tunnels instead of using a structured

overlay. Tunnels between multicast listener and sender domains can be created manually or

automatically [94]. The �rst approach does not grant a �exible solution as self-organization

remains unsupported. Like in the early Mbone, tunnels are set up manually by operators and

do not adapt to user requirements nor network changes [67]. The second case, however, induces

further deployment issues as it is based on an anycast discovery mechanism. Anycast paths are

not widely available in the current Internet. In contrast to these properties, overlay multicast

operates in a self-organizing way, without the need of special requirements provided by the

underlying network.

A tunnel-based infrastructure encapsulates data of a multicast source domain and delivers it

via unicast to receiver domains. In this sense, the hybrid shared tree architecture operates similar

to a dynamic tunneling using application layer encapsulation. However, a tunnel approach does

not include branching and imposes a signi�cant replication and state load on tunnel entries [50].

Each tunnel entry feeds all receiver domains of a multicast group, building a corresponding

point-to-point mesh. Overlay multicast pursues an e�cient distribution strategy starting at the

source domain. The hybrid shared tree architecture, thus, includes a scalable solution for the

inter-domain gap.

13

3 Broadcast in DHTs

3.1 Introduction

Distributed Hash Tables (DHT) de�ne an overlay and enable a routing layer thereon, which

scales logarithmically in both, memory requirements and forwarding path lengths.1 DHTs like

Chord and Pastry have not foreseen any broadcast mechanism, i.e., a mechanism to reach all

participants of one DHT instance without listener participation.

The broadcast mode admits two unique features. The a priori awareness of the data �ooding

task may signi�cantly enhance e�ciency, e.g., by taking advantage of network or (shared) media

speci�cs. Further on it enables a message exchange among mutually unknown parties without

a requirement of speci�c service awareness or any form of signaling. Broadcast is thus the fun-

damental mechanism for unselective data synchronization and for the autonomous coordination

of distributed systems.

On the application layer, there are likewise versatile use cases for broadcast communication.

Applications range from broadband data dissemination in video conferencing or data replication,

over the area of service and peer discovery up to the implementation of a virtual link layer in

VPN-type solutions.

Broadcast is a special case of multicast. This distribution mechanism guarantees to reach not

only a subset of nodes, but all nodes of a dedicated domain without explicit registration. The

set of all nodes is also called the broadcast domain. It is worth noting that a broadcast domain

can be arranged on di�erent layers with varying inherent capabilities. Connecting nodes, e.g.,

with an Ethernet hub to a shared segment facilitates packet distribution based on the physical

network structure. It is limited by the supporting medium, i.e., the range of signal propagation

which may be repeated. The equivalent holds for the wireless domain, where the medium is

always shared, but of restrictive propagation ranges. Participating nodes do not need a speci�c

network logic in sending and receiving broadcast data on the physical layer. Broadcast support,

however, on a dedicated layer should be independent of the underlying tier, which may accelerate

it. In the example of IP, broadcast addresses will be directly mapped to the Ethernet broadcast

address, such that all Ethernet hosts of one segment receive the data independent of their subnet

assignment, but in contrast to network access, packets can be forwarded on the network layer

beyond physical bounds.

Broadcast support is commonly provided on the network and data link layer. Analog to

the realization of IP layer broadcast, application layer broadcast can be mapped to the IP

broadcast. Listing on a prede�ned port then de�nes membership of the broadcast domain, i.e.,

unsolicited reception of data on the application layer. Obviously, on the one hand the dimension

of the broadcast domain is limited by the subnet, because IP layer broadcast will not be routed

in general. On the other hand, all nodes of the IP subnet receive the packets, regardless if

they are running the speci�c application, which may not only cause unnecessary replication

1For the sake of accuracy it should be remarked that there are DHTs like CAN with di�erent scaling behavior.

15

3 Broadcast in DHTs

001∗

00∗

0001∗

000101

1∗

111∗

∗

000111001101111101 100101111001

Figure 3.1: A Binary Pre�x Tree

load on bridges and switches, but also a compatibility and security problem, whenever another

application uses the same port. As a consequence, the �ooding on the application layer should

remain restricted to de facto domain members if possible.

In general, broadcast in logical networks can be enabled by passing data incrementally to

direct overlay neighbors. If the graph of nodes is connected and contains the source, all nodes

will be reached. DHT structures allow to derive such a connected neighborhood graph. Any

node can send packets to an address adjacent to its own key space. In contrast to IP, every

possible address is associated with one overlay peer. Such a simple ring broadcast scheme sends

the packet to exactly one neighbor. Thus, the distribution degenerates to a linear chain. The

broadcast arrives at all n DHT peers after n hops. The neglected parallelism can be improved by

simply sending the data not only along one direction of the ring address space, but also counter

clockwise, which will halve the time complexity. Asymptotically, the complexity remains linear.

As an alternative approach to the case of unknown neighborhoods, a dedicated, well-known

replicator can be placed in the network like the Broadcast and Unknown Server in ATM. Such a

rendezvous point-based approach requires extra signaling to register receivers. The parallelism

of distribution is bounded by the replicator, which sustains the overall duplication load and may

be a single point of failure.

In the following, we will present a general broadcast algorithm along with optimizations for

Pastry, that uses the DHT structure more e�ciently and replicates data stepwise to all neighbors

in pre�x space. This scheme works without peer involvement, especially without signaling.

In contrast to the ring broadcast, the neighbor set is derived from the pre�x relationship of

the source to the other peers, increasing parallelism in data distribution e�ciently, but still

staying within a fairly bounded replication load per peer. We model and analyze the approach

theoretically and in simulations, drawing comparison to a generic rendezvous point approach

derived from Scribe [22].

3.2 A Pre�x Flooding Approach

E�cient broadcasting on the application layer needs a strategy for data replication on the

overlay. In a DHT the peer identi�ers are composed of an alphabet with k digits and have a

prede�ned length. All nodes of a structured overlay can be naturally arranged in a pre�x tree,

branching recursively at longest common pre�x of k neighboring vertices. The leaves are labeled

16

3.2 A Pre�x Flooding Approach

001∗

00∗

0001∗

000101

1∗

111∗

∗

000111001101111101 100101111001

Figure 3.2: DHT Node Placement in a Pre�x Tree � All Vertices Associated with Node 000111
are Highlighted. Adjacent Vertices Represent Pre�x Neighbors.

with the overlay identi�ers of the DHT members and the inner vertices represent the shared

pre�x (cf. �gure 3.1).

This tree can be interpreted as a distribution tree, de�ning the broadcast domain of a speci�c

DHT instance. If a broadcast packet is sent starting from the root of the tree towards the leaves,

the packet will be replicated where pre�xes branch. Actually, the broadcast domain (pre�x

tree) decomposes in many smaller broadcast sub-domains (subtrees), in which the propagations

continue in parallel. Following the nature of broadcast, a packet will be forwarded locally, after

it has arrived at a root of a subtree.

This approach allows to reach all peers of a DHT, because the data is �ooded to the leaves,

which represent the overlay nodes. To decide on packet replication, a peer receiving a broadcast

is required to determine the current branching position on the distribution tree. This context

awareness can be achieved by sending broadcast packets carrying the pre�x currently addressed,

which we call destination pre�x. This destination pre�x will grow in length with every forwarding

hop while descending the tree.

We denote the length of a pre�x A by |A|. Given two pre�xes A and B, the longest common
pre�x will be written L = LCP (A,B). The relation of L being a pre�x of A is written as

L ⊆ A. Consequently L ⊆ A and A ⊆ L if and only if L = A.
A proper speci�cation for data distribution, i.e., routing procedure on pre�x trees, requires

further de�nitions. The two sub-problems that need to be solved are a routing to a pre�x and

the association of nodes with pre�xes:

De�nition 3.1 A pre�x L is associated with an overlay node of ID N , if and only if L ⊆ N .

As shown in �gure 3.2, all inner vertices on the shortest path from the root to a node are

associated with that node.

Concordantly, a pre�x routing can be de�ned as forwarding a packet to the node the desti-

nation pre�x is associated with. In general, there may be several nodes owning an associated

pre�x, since pre�x-to-node mapping is only assured to be unique for pre�xes of full key length.

Taking the shortest path from an arbitrary leave K to the root of the tree, all intermediate

vertices V1, . . . ,Vn are labeled with a pre�x of K. They are associated with K. If the routing
entries V{1,...,n} of K do not point to K itself, the routing along the pre�x tree can be obviously

17

3 Broadcast in DHTs

ine�cient. Suppose the case in which V{1,...,n} refer to K's overlay neighbor K′ and the corre-

sponding entries of K′ point back, then the replication on the path from the root to K alternates

between K and K′ until the tree is descended. For this reason and for the sake of simplicity,

the concept of pre�x �ooding requires at least that associated pre�xes of a peer do not refer to

another overlay node in the local routing table, but to itself.

For �ooding a pre�x tree, a forwarding peer needs to route packets to all neighboring pre�xes

(cf. �gure 3.2). Consequently a peer must store corresponding nodes for each pre�x adjacent to

its associated vertices in a pre�x neighbor set. Even though details of neighbor set maintenance

belong to the underlying DHT, it is important that these tables are complete.2 A complete

neighbor set meets the following condition: Whenever an overlay node exists for a given pre�x,

then the neighbor set will provide an entry for this pre�x. In particular it follows that each

overlay node is a destination in at least one set, since node keys are uniquely assigned.

A source initiates a broadcast by starting with the empty destination pre�x. This corresponds

to delivering the data to all pre�x neighbors Ni. At each neighbor a packet will be further

replicated. The destination pre�x is replaced with the new target address. In detail, the

algorithm works as follows:

Prefix Flooding

� On arrival of a packet with destination pre�x C at a DHT node

1 for all Ni IDs in pre�x neighbor set

2 do if LCP (C,Ni) = C � Ni is downtree neighbor
3 then Cnew ← Ni
4 Forward packet to Cnew

If all peers have a complete set of pre�x neighbors, the scheme guarantees that all overlay

nodes will be accessed, no peer receives a broadcast packet more than once and the algorithm

terminates.

Theorem 3.1 (Coverage) If the pre�x neighbor sets are complete at all nodes, then the Pre-

fix Flooding assures packet distribution to all overlay nodes.

Proof by induction. We assume that the pre�x neighbor sets {Ni} are complete and correct on

all peers. Induction is done with respect to the number of overlay nodes n.

Base case: We consider an overlay with n = 2 nodes, a source and one destination. Both vertices
are then adjacent to each other. The source sends the broadcast directly to its neighbor in the

�rst step where |C| ≥ 0.

Induction step: Assume that the Prefix Flooding covers all overlays with n nodes. We have

to show covering holds for n+ 1. We number the peers from 1, . . . , n+ 1 arbitrarily. According

to the induction hypothesis, the nodes 1, . . . , n receive the broadcast. Based on the assumption

of complete neighbor sets, there exist one or several nodes holding node n+ 1 in their neighbor

sets. Among those nodes select j, 1 ≤ j ≤ n, such that node j shares the longest pre�x C′
among all neighbors with node n+ 1. As j received the broadcast, the node has selected n+ 1
as one Ni corresponding to line 1 of the Prefix Flooding.

2This is a realistic assumption as some DHTs include routing maintenance schemes. If such mechanisms are

missing, they can easily be implemented.

18

3.2 A Pre�x Flooding Approach

001*

00*

0001*

000101

*

000111001101

prefix(vi)

vi

Figure 3.3: A Pre�x Tree Decomposes into Self-similar Subtrees Under Routing Initiated from

Source 000101

The destination pre�x Cj carried by the packet at j now may be equal, shorter or longer than

C′. If Cj ⊆ C′, the condition in line 2 of the algorithm holds and the node n + 1 receives the

broadcast (line 4).

Otherwise, if Cj ⊇ C′, Cj 6= C′ the pre�x C′ must have been a destination pre�x in a previous

hop on the routing path to node j, say at node k. Then node k shares the same longest common

pre�x C′ with the (n + 1)-th node. Thus the destination pre�x of this hop Ck = C ′ ⊇ C ′ and

node n+ 1 is �ooded via the neighbor set of node k.

Theorem 3.2 (Uniqueness) Each overlay node will receive a broadcast packet at most once

using the Prefix Flooding.

Proof. Each overlay node forwards a broadcast only in the range of the destination pre�x, which

follows from line 1 and 2 of the Prefix Flooding. Let Ni be a valid destination pre�x. Then

there exists only one overlay node v receiving the broadcast for Ni due to the uniqueness of the
set of pre�x neighbors. Corresponding to line 3 and 4, Ni de�nes a new destination pre�x Cnew,
which extends the digits of C, i.e., C ⊆ Cnew and |C| < |Cnew|. Cnew can be interpreted as the

root of a new self-similar subtree (cf. �gure 3.3) including a subset of the leaves Lj . Thus, it is
proved that a node will receive a packet at a given pre�x length only once. It remains to show

that broadcast packets do not cross between disjoint subtrees. However, this follows directly

from the observation, that the current pre�x Cnew cannot be matched outside the subtree it

de�nes. Consequently the condition in line 2 will always fail.

From theorem 3.2 it follows that the Prefix Flooding does not induce loops, proving the

assumption that the algorithm terminates.

Implementation for Pastry

The idea of pre�x routing is implemented in Pastry. The Pastry routing table of a peer re�ects

directly the elements of a pre�x tree (cf. section 2.2). Every row in a Pastry routing table is

related to a level of the pre�x tree and every column represents a child of an inner vertex. Each

peer carries a subset of the pre�x tree in its routing table. Merging the routing tables of all

19

3 Broadcast in DHTs

peers, would form the global distribution tree. Pastry peers �ood their routing tables. Thereby

they �ood the pre�x tree, which corresponds to the overlay broadcast described by the Prefix

Flooding. In detail, the idea is as follows: A source sends its data to all routing table entries.

Each destination pre�x corresponds to the root of a broadcast sub-domain. The receiving peers

determine their position in the tree, i.e., the height D in the pre�x tree, at which they receive

the data, and forward the packets downwards. This is equal to sending data to all routing table

entries starting at row D+ 1. Note that the tree position can easily be derived by denoting the

row number, which reduces the packet size in contrast to encoding the entire key. For Pastry

the Prefix Flooding reads in pseudo code:

Pastry Prefix Flooding

� On arrival of a packet with destination pre�x length D

� at Pastry node of ID K with routing table A containing l rows and k columns

1 for all i← D + 1 to l
2 do for all j ← 1 to k
3 do if ai,j 6= Unspecified ∧ ai,j 6= K
4 then Dnew ← i

5 Forward Packet To ai,j

If the routing table is �lled correctly, all theorems for the Prefix Flooding are also valid

for Pastry, since the Pastry routing table corresponds to the set of pre�x neighbors {Ni}. Even
though Pastry guarantees that each overlay node will be covered, the routing table may not

be complete [82], which con�icts with the Prefix Flooding. To �x this issue, Pastry can be

augmented with a proactive routing maintenance mechanism as described in section 6.

It is worth noting that the Prefix Flooding approach is applicable to arbitrary DHTs. If

the DHT does not support forwarding on pre�xes inherently, a supplementary pre�x routing

table can always be constructed on top of the DHT. Obviously this may result in additional com-

munication overhead, because required information cannot be inherited from the DHT directly,

but must be acquired by usual DHT lookups.

3.3 Performance Analysis

The pre�x �ooding approach to broadcasting introduces pre�x trees as a control plane to packet

forwarding. This simple mechanism operates without additional signaling, which is an apparent

advantage. The quality of the routing as inherited from a hash-generated pre�x tree needs closer

inspection. Ideally, packet distribution should be fast and minimize tra�c and replication load

in the network. To obtain an overall insight into the routing quality, we evaluate the pre�x

�ooding scheme according to the following metrics and compare our results to Scribe [22],

which serves as a generic reference model based on the same DHT, Pastry.

Tra�c load measures the mean UDP tra�c per peer generated during the simulation. All

application layer packets will be encapsulated in UDP. To eliminate the base load, i.e.,

data appearing in both schemes like the usual Pastry maintenance, the relative tra�c load

per peer is calculated as well.

Packet replication load quanti�es the number of packets a single peer has to forward. This

metric re�ects the number of direct neighbors per node in the distribution tree. The overall

20

3.3 Performance Analysis

characteristic for the pre�x routing is then given by the distribution of the replication load

obtained from all forwarding nodes.

Travel time describes the time a data packet travels from the source until it reaches a receiver

measured in seconds. This absolute value depends on the one hand on the number on

hops between the nodes and on the other hand of the transmission time inherited from

the hop by hop link delays and the packet size of the transmitted data.

Relative delay penalty measures the ratio of the travel time for data packets delivered via

Scribe and the travel time resulting from the pre�x �ooding scheme. This relative factor

gives an indication of the parallelism of packet forwarding.

Hop count counts the number of overlay routing traversals that a packet needs on its way from

the source to the destination. Note, that the hop count a�ects the travel time, because

every additional hop results directly in an additional transmission time. In this sense the

travel time is correlated with the hop count.

3.3.1 Analytical Results

To understand the performance of the pre�x �ooding scheme, we �rst present analytical con-

siderations. Based on the shape of the pre�x tree, we gain insight in the structural behavior of

protocols for traversing pre�x distribution trees. As this analysis is only based on the tree itself,

fringe e�ects known from simulations are isolated. Actually, simulation results depend always

on the structural phenomena of the studied mechanisms. The theoretical analysis can therefore

be used to verify the outcome of our simulations (cf. 3.3.2) and to explain the measurements

on a �rmer basis.

Replication Load

In the following we want to derive the distribution of the replication load in a pre�x tree. For

the general case of pre�x �ooding in a structured overlay of N nodes using a pre�x alphabet of

k digits, the following upper bound of the replication load can be derived immediately.

Theorem 3.3 Any overlay node in a pre�x �ooding domain of N receivers and an alphabet

with k ≥ 2 digits will replicate a data packet at most log2(N)(k − 1) times.

Proof. Packet replication is performed to distribute data to all neighbors. It will be shown that

the number of possible neighbors of a node falls below the claimed bound.

Any overlay node is situated as a leaf in the pre�x tree and has all vertices on the shortest path

to the root associated with it. Thus the number of neighbors equals the sum of the neighbors

at each associated vertex. For an alphabet of k digits the latter is bound by k− 1. The number
of vertices towards the tree root is limited by the height of the path compressed tree, which is

maximal if all branches are binary. Consequently a pre�x tree with N leaves has a maximal

height of log2(N). Combining both estimates, a node cannot have more than log2(N)(k − 1)
pre�x neighbors.

For the distribution function of the replication load in a full pre�x tree, we need to determine

replication values along with their frequencies. Recalling the picture of a full pre�x tree for

21

3 Broadcast in DHTs

h

h− j

j
k

Figure 3.4: A Pre�x Tree with Inner Vertices De�ning the Root of Subtrees with Self-similar

Properties due to the Recursive Nature of k-ary Trees

an alphabet with k digits, every node except the leaves has k children. The number of packet

replications for an overlay peer is equal to the overall number of forwarding neighbors, which

depends on the tree position, when the peer receives the packet. Per level the replication load is

k − 1. For example, the source starts forwarding a packet from the root of the pre�x tree with

height h, resulting in a constant load of h · (k−1). Pre�x neighbors receive the data on the tree

level h−1 and duplicate the data (h−1) ·(k−1) times. Consequently, in a fully populated k-ary
pre�x tree of height h, replication occurs only at multiples of k− 1, the number of neighbors in
pre�x space. For j ≥ 0 we denote these discrete values by vh,k(j) = (h− j)(k − 1).
To derive the replication frequency, we quantify the occurrence of the replication load vh,k(j).

Since we know the load of a peer forwarding packets at height j, the frequency can be calculated

by counting the number of peers that ful�ll the replication condition. The latter corresponds

to the number of (sub-)trees with height h − j, because every peer serves as forwarder for one

tree. Starting at the source in a full pre�x tree, the structure decomposes in k−1 subtrees with

height h − 1, k(k − 1) subtrees of height h − 2, etc. (cf. �gure 3.4). At every level of the full

pre�x tree, there is an exponential growth in the number of inner vertices representing the root

of new subtrees. Thus, the frequency of (h− j)-size subtrees must increase exponentially with

their decreasing height. In detail there are kj−1 · (k− 1) subtrees of height h− j, which account

for a replication load of (h− j) · (k − 1).

Theorem 3.4 Given a fully populated k-ary pre�x tree of height h. Then the frequency fh,k(vh,k(j))
for a replication load vh,k(j) = (h− j)(k − 1) is given by

fh,k(vh,k(j)) =

{
1 for j = 0
kj−1 · (k − 1) for 0 < j ≤ h. (3.1)

Proof by induction. We assume a full k-ary pre�x tree of height h. The case j = 0 corresponds

to the (single) source that replicates data to h(k − 1) neighbors as derived above.

The induction is done with respect to h− j, the height of a subtree.
Base case: Is h− j = 1, we have to show that the replication load vh,k(h− 1) appears (k − 1)-
times. In a tree of height 1, the source sends the data to all further leaves directly, which equals

k − 1.

22

3.3 Performance Analysis

0 2 0 4 0 6 0 8 0 1 0 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

 h = 1 2 8 , k = 2
 h = 1 2 8 , k = 1 6
 h = 1 2 8 , k = 6 4

Pro
ba

bili
ty

Dis
trib

uti
on

R e p l i c a t i o n L o a d [(k - 1) - 1]

0 1 2 3 4 5 6
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

Figure 3.5: Normalized Probability Distributions Ph,k(h − j) for the Replication Load Cut at

100 in Full Pre�x Trees. Comparisons of a Small (k = 2), Regular (k = 16) and
Large (k = 64) Alphabet in a Realistic Key Space (h = 128).

Induction step: Assume the statement holds for h − j. We have to show that the statement

holds for h− j + 1, i.e., fh,k(vh,k(h− j + 1)) = kh−j(k − 1).

This can be seen as follows: Each full pre�x tree of height h − j + 1 consists of k subtrees

of height h − j. The replication load of a node in a tree of (h − j + 1) equals the sum of

all neighbors in these k subtrees. Using the induction hypothesis the overall replication load

k · fh,k(vh,k(h− j)) = kkh−j−1(k − 1) = kh−j(k − 1).

The overall number of packet replications is easily identi�ed as the number of leave nodes,

since there are no packet duplications and each peer receives the broadcast. The number of

leaves of a full k-ary tree of height h equals kh, such that we arrive at the following

Corollary 3.1 The probability distribution Ph,k for packet replication multiplicities reads

Ph,k(vh,k(j)) =


k−h for j = 0
kj−h−1 · (k − 1) for 1 ≤ j ≤ h
0 otherwise.

(3.2)

Proof. As we know the frequency distribution from theorem 3.4, we can calculate the normal-

ization factor based on the geometric series by

h∑
j=0

fh,k(vh,k(j)) = 1 +
h∑
j=1

kj−1(k − 1) = 1 + (k − 1)
h∑
j=1

kj−1 = 1 + (k − 1)
kh − 1
k − 1

= kh.

The normalized probability distribution Ph,k(h − j), 0 ≤ j ≤ h is plotted in �gure 3.5. The

height of the tree, which corresponds to the key length in a DHT, is �xed to h = 128 and the

23

3 Broadcast in DHTs

pre�x alphabet size k is varied from 2 to 16 and 64. It can nicely be seen that in a full pre�x

tree most of the peers are stressed solely with a small replication load. A large replication load,

however, is highly unlikely for these exponentially decaying distributions. The variation of the

branching parameter k in�uences signi�cantly the balance of replication values smaller than 10.

If the tree broadens, more leaves will receive a broadcast directly from the same neighbor, while

the distribution is more balanced for narrower trees.

Corollary 3.2 The average replication load for a node in a full pre�x tree Th,k is given by

1− k−h, its standard deviation by
√
k +O(k−h).

Proof. Omitting vanishing terms, the average is expressed by

h∑
j=0

vh,k(j) · Ph,k(vh,k(j)) = h(k − 1) · k−h +
h∑
j=1

(h− j)(k − 1) · kj−h−1(k − 1)

= k−h

h(k − 1) +
h∑
j=1

(h− j)(k − 1) · kj−1(k − 1)


=

k − 1
kh

h+ (k − 1)
h−1∑
j=0

(h− (j + 1))kj


=
k − 1
kh

{
h+ (k − 1)

(
h− 1
1− k +

k(kh−1 − 1)
(1− k)2

)}

=
k − 1
kh

+
kh − k
kh

= 1− k−h.

The sum in the third line is an arithmetic-geometric progression and evaluated according to [2].

To evaluate the standard deviation, we �rst calculate the second moment

h∑
j=0

(vh,k(j))2 · Ph,k(vh,k(j)) = k−h

h2(k − 1)2 +
h∑
j=1

(h− j)2(k − 1)2 · kj−1(k − 1)


=

(k − 1)2

kh

h2 + (k − 1)
h−1∑
j=0

(h− (j + 1))2kj


=
(k − 1)2

kh

{
h2 +

(k − 1)
(k − 1)3

(
(kh − 1)(1 + k)− h2(k − 1)2 − 2h(k − 1)

)}
= k−h

{
(kh − 1)(1 + k)− 2h(k − 1)

}
= 1 + k − k−h {(1 + k) + 2h(k − 1)}

Combining these terms leads to the standard deviation for the replication load (RL)

σh,k(RL) =
√
< RL2 > − < RL >2

=
√

1 + k − k−h {(1 + k) + 2h(k − 1)} − (1− k−h)2

=
√
k − k−h {(2h− 1)(k − 1) + k−h}

=
√
k +O(k−h)

24

3.3 Performance Analysis

Surprisingly, the average replication load for a realistic key space is almost independent of

h and k and very close to 1. This is mainly due to the high number of nodes, which are not

required to forward data at all. Suppose an overlay with 256 keys and a binary alphabet, the

average equals 0, 996. Commonly, the key space is much larger to avoid collisions in addressing.

Similarly the variation of the replication load is almost only a function of the pre�x alphabet

k, but fairly independent of the tree height and thus the number of nodes.

Observing the weak dependence of the replication load distribution on h and k, i.e., the tree

shaping parameters, it can be assumed that the model is su�ciently general to grant insights

into the qualitative replication behavior of partly populated k-ary trees. We will see in section

3.3.2 that the simulations support this assumption.

Hop Count

As for the replication load, we �rstly derive general measures of the number of hops a packet

travels from the source to any destination in the pre�x �ooding scheme.

Theorem 3.5 Any overlay node in a structured broadcast domain of N receivers and an alpha-

bet with k ≥ 2 digits will receive a packet from pre�x �ooding after at most log2(N) hops. In

the presence of Pastry overlay routing, the number of hops attained on average equals log2b(N)
with k = 2b.

Proof. Pre�x �ooding increases the destination pre�x hopwise to the next longest common pre�x

as obtained from the routing table. Longest common pre�xes are represented by branching

vertices on the pre�x tree. In each forwarding step, the pre�x tree is consequently descended

by one vertex. Thus the maximal number of hops is limited by the height of the tree, which is

bound by log2(N) as shown in the proof of theorem 3.3. This shows the �rst claim.

Flooding based on the Pastry substrate is equivalent in path length to issuing packets from the

source to all destinations by unicast routes. The average unicast path length in Pastry routing

equals log2b(N) hops [82], which proves the second claim.

We now want to return to considering a fully populated pre�x tree and derive the hop distri-

bution thereof. The main idea is similar to the replication load: A forwarding peer sends the

broadcast to k − 1 pre�x neighbors, all of them rooting an equally structured subtree of height

h− 1. We are counting the number of paths with a length reduced by one herein. Additionally

we count the frequency of paths for the calculated hop count in the virtual subtree containing

the forwarder. This recursion results in

Theorem 3.6 Given a fully populated k-ary pre�x tree of height h, the frequency fh,k(j) of a

hop count j occurring in pre�x �ooding is given by

fh,k(j) =

(
h

j

)
(k − 1)j . (3.3)

25

3 Broadcast in DHTs

Proof. A �ooding packet arriving at node n after j hops will admit a current destination pre�x

of length j. Being located in a subtree of height h− j, n will forward the packet to its downtree

neighbors, thereby partitioning its subtree into k − 1 further subtrees of height h − j − 1 (cf.

�gure 3.4). Due to the recursive nature of the k-ary pre�x tree, the frequency distribution

satis�es the recurrence relation

fh,k(j) = fh−1,k(j) + (k − 1) · fh−1,k(j − 1) with f1,k(0) = 1, f1,k(1) = k − 1. (3.4)

Inserting fh,k leads to

fh,k(j) =

(
h

j

)
(k − 1)j =

(
h− 1
j

)
(k − 1)j + (k − 1)

(
h− 1
j − 1

)
(k − 1)j−1

= fh−1,k(j) + (k − 1) · fh−1,k(j − 1),

which proves the theorem.

This result can be interpreted in two di�erent ways. At �rst, among all legitimate paths in

downtree routing, i.e., of length h, those of length j are selected and branch k − 1 times at

each of the j intermediate pre�x nodes. At second, �ooding corresponds to a node discovery

process, where a node discovers its vh,k(j) = (h − j)(k − 1) neighbors which in turn discover

their neighbors in the following step. Subsequent neighbor discovery requires connect to the

j-th part as only (h− j)(k − 1)/j nodes have further neighbors.
Following a similar argument as in corollary 3.1, it is clear that normalization for hop count

frequencies is given by kh, the number of leaf nodes in the full pre�x tree.

Corollary 3.3 The probability distribution Hh,k(j) of the hop count for �ooding a full pre�x

tree Th,k evaluates to

Hh,k(j) = k−h ·
(
h

j

)
(k − 1)j . (3.5)

Proof. Using the binomial expansion (1 + x)n =
∑n
j=0

(n
j

)
xj [2],

h∑
j=0

fh,k(j) =
h∑
j=0

(
h

j

)
(k − 1)j = (1 + k − 1)h = kh.

Corollary 3.4 The average hop count at which a packet is received from �ooding in a full pre�x

tree Th,k is given by < Hh,k >= (k−1)/k ·h, the standard deviation of the hop count distribution

(3.5) equals σHh,k
=
√

(k − 1) · h/k.

26

3.3 Performance Analysis

Proof. An evaluation of the average sum with the help of the symbolic calculator Maple yields

< Hh,k >=
h∑
j=0

j ·Hh,k(j) =
h∑
j=0

j · k−h ·
(
h

j

)
(k − 1)j = k−h · k

h(k − 1) · h
k

=
k − 1
k
· h.

The second moment evaluates to

< H2
h,k >=

h∑
j=0

j2 ·Hh,k(j) =
h∑
j=0

j2 · k−h ·
(
h

j

)
(k − 1)j =

k − 1
k
· h+

(
k − 1
k

)2

· h(h− 1),

hence combining these terms leads to the standard deviation

σHh,k
=

√
< H2

h,k > − < Hh,k >2 =

√
k − 1
k
· h+

(
k − 1
k

)2

· h(h− 1)−
(
k − 1
k

)2

· h2

=

√√√√h · {k − 1
k
−
(
k − 1
k

)2
}

=
√
h · (k − 1)

k

This average is almost independent of the pre�x alphabet k and can be in some sense in-

terpreted as the counterpart of the average replication load as seen in corollary 3.2. As the

average number of per hop replications is close to one, packets travel down the entire tree and

reach most of their receivers after nearly h hops. The width of the hop count distribution,

its standard deviation, admits a weak dependence on k, slowly decaying from its maximum at

k = 2 as k−1/2.

In contrast to the replication load distribution, which showed only a weak dependence on the

tree shaping parameters, the hop count results strongly depend on h for the fully populated

k-ary tree. The height h is directly related to the number of nodes kh in this tree, which does

not hold for realistic scenarios. Thus a direct transfer to sparsely populated random trees is

questionable.

To derive a distribution for general distribution trees, evaluations are required on the class of

all random k-ary trees3. Unfortunately this turns out to be di�cult. Proceeding in a signi�cantly

simpler, but reasonable approach, we restrict the analysis to the class of random recursive k-

ary trees with a homogeneous probability p for independent edges. In this model, each vertex

branches to each of its k − 1 possible out degrees independently with probability p, thereby

preserving the recursive nature of the fully populated k-ary tree. Instead of equation 3.4, the

hop frequency of routing on this random recursive tree will be governed by the modi�ed rate

equation

fh,k(j) = fh−1,k(j) + p · (k − 1) · fh−1,k(j − 1) with f1,k(0) = 1, f1,k(1) = p(k − 1). (3.6)

This can be solved analogously to 3.4 and immediately yields

3A random k-ary tree is a tree with nodes of out degrees ≤ k that follow some random distribution.

27

3 Broadcast in DHTs

Corollary 3.5 The probability distribution H
(p)
h,k(j) of the hop count for �ooding a random re-

cursive k-ary pre�x tree T
(p)
h,k with homogeneous, independent edge probability p evaluates to

H
(p)
h,k(j) = (1 + p(k − 1))−h ·

(
h

j

)
· (p(k − 1))j , (3.7)

which attains the average value < H
(p)
h,k > = p(k−1)

1+p(k−1) · h, and the

standard deviation σ
H

(p)
h,k

=
√
p(k−1)·h

1+p(k−1) .

The introduced edge probability p is not a 'free' parameter, but a function of the total number

of leaf nodes N = (1 + p(k − 1))h in the tree. Solving this relation for p,

p =
h
√
N − 1
k − 1

,

and inserting typical Pastry parameters for k = 4, 16, h = 128 and node numbers of our

simulations, will lead to the relatively small edge probabilities, mean hop counts and standard

deviations displayed in table 3.1.

k = 4, h = 128 k = 16, h = 128
N 10 100 1.000 10.000 10 100 1.000 10.000

p 0.0061 0.0122 0.0185 0.0249 0.00122 0.00244 0.00370 0.00497

< H
(p)
h,k > 2.30 4.52 6.73 8.90 2.30 4.52 6.73 8.88

σ
H

(p)
h,k

1.50 2.09 2.53 2.88 1.50 2.09 2.53 2.87

Table 3.1: Selected Link Probabilities, Mean Hop Counts and Standard Deviations for Charac-

teristic Parameter Sets.

The corresponding probability distributions for a small and large overlay are plotted in �gure

3.6 using a �xed key length of 128 and an alphabet size of 16. p = 1 represents a full k-ary

pre�x tree. Although the tree structure changes by decreasing the number of leaves, the shape

of the distribution persists and results mainly in an adjustment of the centering to < 20 hops

preserving the same qualitative behavior. It is interesting to observe that the width of the hop

count distribution weakly oscillates as a function of the sparsity parameter p, approaching 0

as p ↓ 0 and about
√
h/k as p ↑ 1, while crossing its maximum

√
h/2 at p = 1/(k − 1). For

realistic settings in partly populated pre�x trees, the distribution narrows around small mean

values. Thus, a broadcast is delivered after an acceptable number of hops to most of the peers.

These analytical results will not only support a qualitative insight into the mechanisms of

pre�x-based packet distribution, but also show ample agreement with the simulation results

presented in the subsequent section. The latter speci�cally holds for the overall shape of the

distribution, even though the actual centers and mean values are overestimated with respect to

simulations and theorem 3.5. This is due to the limited validity of this homogeneous approach

in very sparse networks. As will be derived in the multicast section 4.2, edge probabilities

are not homogeneous in pre�x length, but exponentially decaying, whenever most of the pre�x

key space remains unpopulated. The advantage of this simpler model should be seen in being

completely solvable, as well as in the smooth transition that it grants between a densely and a

partly populated pre�x space.

28

3.3 Performance Analysis

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

Pro
ba

bili
ty

Dis
trib

uti
on

H o p C o u n t [N o d e s]

 H h , k
(p) , p = 1 . 0

 H h , k
(p) , p = 0 . 0 0 1 2 2

 H h , k
(p) , p = 0 . 0 0 4 9 7

Figure 3.6: Probability Distributions H
(p)
h,k for the Hop Count in Pre�x Trees With Varying

Homogeneous Edge Probabilities p and Fixed k = 16, h = 128

3.3.2 Simulation Results

In this section, we will analyze the performance of the pre�x �ooding based on a stochastic

discrete event simulation. Pre�x �ooding distributes a broadcast via virtual peers along optimal

paths according to a pre�x tree. For comparative reasons, we also investigate the behavior of a

rendezvous point-based approach operating on a pre�x tree. For the latter, Scribe [22] is chosen

as a generic approach for structured trees rooted at a rendezvous point. Both, the pre�x �ooding

and Scribe, are implemented on top of a proactive version of the DHT substrate Pastry. The

proactive routing maintenance will be initiated after the peer creation process ended to ensure

a complete Pastry routing set.

In detail, our simulations are performed on the network simulator platform OMNeT++ 3.3

[99], supplemented by a preliminary version of the overlay simulation package OverSim [10]

including Scribe and extended by the pre�x �ooding implementation. Pastry has been con�gured

as in its original version [82]. Especially, we use a key length of 128 and an alphabet size of 16,
if not mentioned otherwise. To investigate the scaling behavior of the protocols, the simulations

are conducted for a number of peers varying by three orders of magnitude.

None of the relative metrics described in section 3.3 depend on the underlay. Thus the Simple

model [9] has been applied as the underlying network with a homogeneous link delay of 1ms
to analyze the network properties inside the overlay. Underlay properties such as link delay

variations would in�uence the proximity selection and stretch the travel time, which should

produce the same impact on both approaches and would cancel out by relative metrics. The

Simple model also eliminates processing steps of non-overlay nodes between peers, which would

be an unnecessary detail for our study.

The analysis is not focusing on reliability aspects, which allows us to neglect churn. In

particular, any e�ects of volatile nodes would be completely maintained by Pastry for the pre�x

�ooding and partially for Scribe. Rendezvous point (RP) based schemes have to reorganize

29

3 Broadcast in DHTs

1 0 1 0 0 1 0 0 0 1 0 0 0 0

1 k
2 k
3 k
4 k
5 k
6 k
7 k
8 k

<M
ea

n T
raf

fic
Lo

ad
 Pe

r P
ee

r>
[By

tes
]

N e t w o r k S i z e [N o d e s]

 S c r i b e
 P r e f i x F l o o d i n g

(a) Absolute UDP-Tra�c per Peer L

1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4
1 , 6
1 , 8
2 , 0

<R
ela

tive
 Tr

aff
ic L

oa
d P

er
Pe

er>

N e t w o r k S i z e [N o d e s]

(b) LScribe/LPre�x Flooding

Figure 3.7: The Mean UDP Tra�c Volume per Peer in Pre�x Flooding and Scribe for Overlays

of Di�erent Sizes

the distribution tree due to failing RPs, resulting in DHTs by new key associations, which

nevertheless is not addressed here.

Each simulation is sampled with the same parameter settings until it is converged.4 The

convergence time has been determined by performing calculations for increasing sample sizes

until the variation of values remain two orders of magnitude below actual results. Each sample

consists of a new key association to peers randomly selected according to uniform distribution.

One sender is chosen from the peer set per sample with equal weights. For Scribe, we also

uniformly choose a key as multicast group, which all nodes join except the source. After one

broadcast is delivered to all receivers, the measurements stop. We average the results over all

samples with the same settings.

Summarizing the simulation scenario, we calculate the �ooding performance on an arbitrary

(k = 16)-ary pre�x tree with a �xed maximal height and a varying number of leaves inter-

connected by links of identical weight. The broadcast will be initiated by a randomly selected

leaf.

The simulation has been thoroughly tested. Manual packet tracing has been performed for

selected networks to compare simulations with the routing algorithms. Plausibility checks are

based on the results as described below.

Tra�c Load

The mean tra�c load accumulates the UDP data volume per peer. The relative tra�c load

includes all overhead of Scribe in contrast to the pre�x �ooding, which is free of additional

signaling. The results are plotted in �gure 3.7. In general, the tra�c load per peer increases

polynomially. However, Scribe requires sending of slightly more data to accomplish a broadcast

(cf. �gure 3.7(b)). The reason for this is twofold: The pre�x �ooding inherits all routing

information directly from Pastry without the requirement of further signaling and hence carries

no overhead. In contrast, Scribe has to perform an additional active group and tree management,

including receiver subscriptions and paths maintenance towards the rendezvous point. The

application header of Scribe is also marginally larger, as the full overlay key is transmitted to

4The number of runs per scenario depends on the overlay size and ranges from 500− 2500.

30

3.3 Performance Analysis

identify the multicast group. The pre�x �ooding requires only an indication of the pre�x length

to identify the destination pre�x.

Surprisingly, the tra�c load will be dominated by the KBR overhead. The amount of data for

Scribe and the pre�x �ooding di�ers in additional tra�c for maintenance in Scribe. Eliminating

regular Pastry data for both approaches by a relative measure reveals that BIDIR-SAM and

Scribe creates almost the same amount of data (cf. �gure 3.7(b)), while the absolute tra�c

volume increase is dominated by Pastry (cf. �gure 3.7(a)).

Although the signaling of Scribe is negligible in our analysis, it is worth noting that a signaling

free scheme like the pre�x �ooding is less vulnerable to distortions. A join message which has

been lost, restrains receivers from packet reception.

Replication Load

The distributions of the peer replication load for pre�x �ooding and Scribe are displayed in

�gure 3.8. Both schemes show an exponential decay around their common average value of

1. However, the shapes of the distributions for the two approaches vary signi�cantly, which

becomes apparent at �rst from standard deviation values. While the widths of the distributions

for pre�x �ooding are small and almost independent of network sizes, the corresponding values

for Scribe grow large, about linearly in the number of nodes.

Both broadcasting schemes produce a large number of replications of values 0 and 1, but
frequencies drastically drop for higher multiplicities. Pre�x �ooding distribution attains a much

smoother decay, leaving signi�cant probability to replication values of 2 − 10. Smoothness is

even more pronounced for smaller alphabets as visualized in �gure 3.8(e). In contrast, Scribe

decreases faster from its average, decaying rapidly to probabilities below 1/100 for replications

larger than 2, fairly independent of the alphabet k.

An exception from this overall shape can be observed for the distribution of 10 peers in

Scribe. Here, the frequencies of replication values around 9 are strongly enhanced. This border

e�ect for very small networks can be understood from analyzing distribution tails. As visualized

in the log-log plot 3.8(d), the distribution of Scribe is heavy-tailed according to a power law

decay, representing remarkably high probabilities for very large replication values up to 7800.
Corresponding probabilities are accumulated for small sized overlays.

In contrast, the pre�x �ooding distribution admits a strict exponential decay, with tail weights

vanishing at 50. Replication values in pre�x �ooding are superimposed by oscillating frequencies

as visible in �gure 3.8(c). The resulting probability �bumps� are noticeable on di�erent scales

for all overlays. The observation of oscillating tails can be explained by our theoretical analysis,

which reveals an exponential decay within the range of multiples of (k − 1). Compared to the

prerequisites of corollary 3.1, the simulated overlays do not operate on full k-ary pre�x trees.

Hence replication values do not only occur as multiples of the branching factor, but level out

with neighboring values. Nevertheless, regarding the peaks of the bumps, the population and

replication pattern of the k-ary trees remain clearly visible.

In both approaches, most of the peers receive the broadcast without a need to forward it

further. Scribe thereby stresses a small number of peers to serve a much higher replication load.

Instead, the pre�x �ooding reduces the maximal replication load by distributing the load fair

and evenly over the neighbors.

31

3 Broadcast in DHTs

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7
<R

ela
tive

 Fr
eq

ue
nc

y>

R e p l i c a t i o n L o a d [P a c k e t s]

 1 0 N o d e s < X > = 0 , 9 σX = 2 , 1 5
 1 0 0 N o d e s < X > = 1 σX = 2 , 6 1
 1 0 0 0 N o d e s < X > = 1 σX = 2 , 7 3
 1 0 0 0 0 N o d e s < X > = 1 σX = 2 , 8 6

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(a) Pre�x Flooding, k = 16

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 1 0 N o d e s < X > = 0 , 9 σX = 2 , 5 4
 1 0 0 N o d e s < X > = 1 σX = 7 , 1 8
 1 0 0 0 N o d e s < X > = 1 σX = 1 9 , 4 7
 1 0 0 0 0 N o d e s < X > = 1 σX = 5 2 , 7 8

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(b) Scribe, k = 16

1 1 0 1 0 0 5 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1
 1 0 N o d e s
 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

(c) Detail: Tail for Pre�x Flooding, k = 16

1 1 0 1 0 0 5 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 1 0 N o d e s
 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

(d) Detail: Tail for Scribe, k = 16

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 1 0 N o d e s < X > = 0 , 9 σX = 2 , 1 5
 1 0 0 N o d e s < X > = 1 σX = 1 , 8 0
 1 0 0 0 N o d e s < X > = 1 σX = 1 , 8 8
 1 0 0 0 0 N o d e s < X > = 1 σX = 1 , 8 7

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(e) Pre�x Flooding, k = 4

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

0 , 6

0 , 7

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 1 0 N o d e s < X > = 0 , 9 σX = 2 , 7
 1 0 0 N o d e s < X > = 1 σX = 3 , 9 9
 1 0 0 0 N o d e s < X > = 1 σX = 7 , 8 0
 1 0 0 0 0 N o d e s < X > = 1 σX = 1 9 , 3 4

0 1 0 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(f) Scribe, k = 4

Figure 3.8: Distribution of Packet Replication Comparing Pre�x Flooding With Scribe for a

Number of Peers Using a Fixed Key Length of 128 and a Varying Pre�x Alphabet

Size k

32

3.3 Performance Analysis

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 1 , 2 1 , σX = 0 , 4 1
 S c r i b e < X > = 2 , 0 6 , σX = 0 , 2 4

(a) N = 10

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 1 , 9 1 , σX = 0 , 5 6
 S c r i b e < X > = 2 , 7 0 , σX = 0 , 4 9

(b) N = 100

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 2 , 6 8 , σX = 0 , 6 3
 S c r i b e < X > = 3 , 5 2 , σX = 0 , 8 9

(c) N = 1.000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 3 , 4 5 , σX = 0 , 6 9
 S c r i b e < X > = 4 , 4 9 , σX = 1 , 4 0

(d) N = 10.000

Figure 3.9: Hop Count Distribution for an Overlay of Size N , k = 16

Hop Count

The mean hop count distribution for di�erent overlay sizes is shown in �gure 3.9. In general, both

schemes show the logarithmically growing hop path length dependent on the number of peers.

With an increasing quantity of leaves, the height of pre�x trees will increase logarithmically,

as well, resulting in longer paths from the source and intermediate forwarders to the receivers.

Figure 3.9(a) visualizes nicely that the path length in rendezvous point schemes is elongated

by at least one hop, which clearly holds independent of the receiver numbers. The mean hop

count < X > for Scribe highlights approximately one additional node in contrast to the pre�x

�ooding.

For a su�ciently large N > 10, the average of the distribution for the pre�x �ooding attains

directly the calculated mean hop count in theorem 3.5, at which all other hop count values are

centered. The hop count distribution in Scribe shows a heavy-tailed behavior, which increases

with the overlay size as indicated by the approximate linear growth of the standard deviation.

In contrast, the pre�x �ooding almost attains a constant variation. Consequently, in pre�x

�ooding the path lengths are tightly concentrated around the logarithmically bounded average,

while Scribe builds up longer branches with higher weights.

33

3 Broadcast in DHTs

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 1 , 5 4 , σX = 0 , 6 1
 S c r i b e < X > = 2 , 0 6 , σX = 0 , 2 4

(a) N = 10

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 2 , 6 7 , σX = 0 , 9 1
 S c r i b e < X > = 3 , 1 1 , σX = 0 , 7 1

(b) N = 100

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 3 , 9 0 , σX = 1 , 1 0
 S c r i b e < X > = 4 , 3 2 , σX = 0 , 9 0

(c) N = 1000

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 P r e f i x F l o o d i n g < X > = 5 , 1 1 , σX = 1 , 2 2
 S c r i b e < X > = 5 , 6 2 , σX = 1 , 1 0

(d) N = 10000

Figure 3.10: Hop Count Distribution for an Overlay of Size N , k = 4

34

3.4 Related Work

1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 , 0 0 1
0 , 0 0 2
0 , 0 0 3
0 , 0 0 4
0 , 0 0 5
0 , 0 0 6
0 , 0 0 7
0 , 0 0 8
0 , 0 0 9

 S c r i b e
 P r e f i x F l o o d i n g

<T
rav

el
Tim

e>
 [s

]

N e t w o r k s i z e [N o d e s]

(a) Absolute Travel Time

1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4
1 , 6
1 , 8
2 , 0

<R
ela

tive
 De

lay
 Pe

na
lty>

N e t w o r k S i z e [N o d e s]

(b) Travel TimeScribe/Travel TimePre�x Flooding

Figure 3.11: Travel Time and Relative Delay Penalty for Pre�x Flooding & Scribe

Travel Time

Figure 3.11 shows the absolute travel time and the relative delay penalty depending on the

network size for Scribe and pre�x �ooding. The pre�x �ooding outperforms a rendezvous point-

based approach by approximately a factor of 1.4 in larger networks (cf. �gure 3.11(b)). Due to

the sparsely �lled pre�x space in small networks, the maximal path length from the rendezvous

point (RP) to the receivers is similar to the pre�x �ooding, which is visualized in �gure 3.11(a).

Figure 3.8(b) con�rms this observation: For an overlay with 10 peers almost all receivers will be

addressed directly by a node, which replicates in the number of receivers, i.e., the rendezvous

point (RP). The more keys are allocated, the more branching points are located closely to the

RP resulting in longer paths and less e�cient parallelism in contrast to the pre�x �ooding.

The travel time has a direct correlation with the path length, which reproduces �gure 3.11(a)

by comparison with �gure 3.9. Recalling the constant link delay of 1ms, the average of the

absolute travel time corresponds directly to the mean hop count for both approaches.

3.4 Related Work

The principal approach for implementing broadcast on a pure DHT derives from recursive

partitioning of the key space with data distribution following partition ranges. The pre�x

�ooding operates in this sense, de�ning numerical interval boundaries from pre�x transitions.

The �rst idea of a broadcast based on nested intervals was proposed in [33]. The authors observe

that lookup (routing) in DHTs is similar to performing a distributed k-ary search (routing along

a k-ary tree). The broadcast is sent to intervals of exponentially increasing scale as derived from

the Chord routing table. Each interval decomposes recursively, creating a broadcast distribution

tree for Chord, where peers recursively �ood the routing table. The messages are distributed

to all peers without redundancies under the assumption of complete �nger tables. However,

the correctness of the algorithm is not formally proven probably due to the simplicity of Chord

associating uniquely a �nger table entry to a peer. The paper lacks a detailed analysis of the

approach, as the authors only measure the average messages per node and the ratio of message

redundancy in simulations.

A generalization of [33] is proposed in [41]. In addition to a design independent of Chord, the

35

3 Broadcast in DHTs

authors enhance their algorithm by reliability routines, which guarantee a broadcast distribution

independent of the routing table states. This is performed by delegating data delivery for missing

entries to subsequent forwarders. It is not obvious that the algorithm terminates, and has not

been proven. Node coverage and unique delivery of messages are only veri�ed by simulations.

These simulations focus on the performance of the reliability mechanism.

The authors in [59] introduce a scheme, which splits the key space in d partitions of equal

size and selects the �rst node in clockwise direction as the responsible forwarder. Similar to

[33], this approach refrains from using uneven, logarithmic partitioning. The focus of the work,

however, lies in reliable broadcast under churn. The proposed algorithm is complemented with

a recursive acknowledgement mechanism, i.e., all children of a parent node have to con�rm

the data reception. If the ACK failed after a speci�c timeout, a new responsible peer for the

partition is selected and the broadcast is retransmitted. The performance is analyzed with

respect to di�erent churn rates.

An approach, which cannot ensure a broadcast distribution without data redundancy, is

presented in [65]. The authors combine a slightly enhanced version of [33] with an epidemic

distribution. All broadcast forwarders send the data periodically to a randomly chosen neigh-

bor, whereby the protocol cannot guarantee that a neighbor receives the broadcast only once.

Although epidemic �ooding enforces the reliability of data delivery, it con�icts with the design

goal of a broadcast to operate without redundancy.

All of the approaches mentioned above lack formal veri�cation, as well as general analytical

considerations regarding data distribution according to k-ary pre�x trees. Most of the algorithms

are implemented on top of Chord, none of them on Pastry, which natively o�ers a proximity-

aware pre�x routing.

A generalized construction scheme to partitioning the key is space is presented in [57]. The

authors observe that any contractive self-mapping function P of the key space with a single

�xed point α, i.e., P (α) = α, gives rise to a parent relationship. Based on the parent relation

P (α), a reverse path can be set up for any node α, leading to a broadcast distribution tree with

the root α. Di�erent parent functions thus give rise to di�erent trees at variable roots, which

may be used for load-sharing or redundancy purposes.

DHT speci�c �ooding has been introduced in the early work [78] for CAN (Content Address-

able Network). In contrast to Chord or Pastry, CAN maps node IDs to regions representing

coordinates in a partitioned d-dimensional space. CAN broadcasts the data to all geographi-

cal neighbors, thereby accounting for predecessors and foreseeable redundancies. However, the

partitioning of the d-dimensional space may be uneven and result in data duplication at sub-

regions. An extensive simulation study of �ooding and tree based overlay multicast over CAN

and Pastry with respect to the underlay is presented in [23]. The authors show that CAN �ood-

ing is outperformed by Pastry �ooding, which relies on a more e�cient tree structure adaptive

to the underlay.

Our implementation of the pre�x �ooding is almost identical to the Pastry �ooding of Castro

et al. [23]. The main di�erence lies in the reactive routing maintenance, which may result

in data redundancy at the fallback forwarder in [23]. The focus of their analysis of broadcast

distribution concerns the context of overlay multicast. The measured metrics re�ect performance

issues focusing on e�orts imposed on the underlying network. In this sense, our results can be

understood as complementary.

The contribution of this work lies in a structural analysis of �ooding on k-ary pre�x trees,

36

3.5 Discussion

both, analytically and in simulations. Further on, we proved the correctness of the pre�x-based

broadcasting.

3.5 Discussion

Typical applications for broadcasting are met in IPTV and large-scale conferences or virtual

events. While the �rst application is of uni-directional nature, but distributes higher data

volumes, the latter operates under a tight real-time regime as required for immediate feedback.

Both application areas are sensitive to disturbances resulting from delays or jitter. Additionally,

streams of high data volume may overload intermediate forwarding nodes that are requested to

replicate tra�c at high multiplicities.

In this chapter we have presented and analyzed broadcasting within distributed hash tables.

A pre�x �ooding, distributing data along pre�x branches directly to receivers, is compared to a

rendezvous point-based scheme, which utilizes a shared tree rooted at a prede�ned anchor peer.

Several phenomena of general interest could be observed.

Divergent Path Length Distributions

Our simulation results con�rm the mean hop di�erence of one between the pre�x �ooding and

the rendezvous point-based approach Scribe. This additional, triangular hop in the overlay

becomes noteworthy when stretched in the underlay and then may put stress on several links.

The major advantage of the pre�x �ooding, though, is its quite stable concentration of path

length distribution around the average, attaining low variations independent of the overlay

size. In general, P2P networks consist of volatile nodes. If we assume an overlay with regular

churn, i.e., session times in the range of minutes or larger, and a persistent number of peers on

average, the DHT moderately reorganizes key associations. Such structural modi�cations lead

to changing paths within the overlay and in the worst case, a single arrival or departure of a

node may cause a data path to change drastically. In the pre�x �ooding, the path length only

changes moderately for new and existing peers due to its narrow distribution.

This property di�ers for Scribe, which not only creates longer paths, but also admits a higher

hop count �uctuation which grows with network size. A change of the overlay structure may

thus elongate delivery branches signi�cantly. This results in a higher jitter at end nodes. Such

unstable behavior can cause disturbances, in particular for voice and video applications. Large

jitter has to be compensated by bu�ers at the application side, which in turn add delay. The

heavy-tailed overlay hop count distribution of Scribe produces a largely inhomogeneous travel

time, which complicates synchronous applications.

Varying Replication Load

A high variation can also be identi�ed for the packet replication in Scribe. Similar to the pre�x

�ooding, it is rather likely that peers forward with low replication load. Nevertheless, in a

long tail distribution nodes are required to replicate many more packets with values up to 7800
in large sized overlays of 10.000 peers. The distribution of packet replication is thus strongly

unbalanced, requiring very low and very high values to be served within the same scenario.

In contrast to Scribe, the pre�x �ooding guarantees a replication load closely balanced around

its average of about 1. It can be tuned directly by the branching factor k. As we know from

37

3 Broadcast in DHTs

the theoretical analysis of section 3.3.1, packet replications occur as multiples of k − 1 in full

pre�x space. Decreasing k adjusts the maximum number of replications to smaller values.

On the contrary, distribution trees in Scribe are data-driven and not pre�x-shaped. They do

not allow for a direct con�guration of the peer load via the pre�x parameter. As adaptation

to node capacities is not inherently provided in DHTs, group communication schemes should

independently balance packet replications.

In scenarios of lightweight end devices with low battery power connected by low capacity

links, each additional packet transmission causes a faster reduction of life time as well as early

congestion. If a peer � responsible for large number of replications � resides inside a wireless cell,

a broadcast domain may collapse, while packets storm the shared medium. Further on, in the

sense of tra�c pattern recognition, a well located high duplication rate of packets is identi�ed

as anomaly. This may result in blocking subsequent packets by intrusion detection systems.

An Overloaded Single Peer

The peers with extraordinarily high packet replication load in Scribe have been identi�ed as

the rendezvous points (RP). An appropriate treatment of such service nodes becomes more

important under the aspect of unbalanced packet replication, but poses a severe conceptual

problem in DHTs: The placement of this entity should account for node and network capacities,

but in a DHT is bound to the structural mapping of the multicast group identi�er to an overlay

key. Any alternative approach, e.g., selecting the RP address independently of the group address,

will break the key space semantic with the result that an overlay node cannot derive the RP

distribution address automatically.

Packet replications may also be a problem for standard PCs. Each broadcast packet will

be internally passed towards the application layer. Thus copying data is done by CPU and

usually within the user space. Even though current processors are powerful enough to handle a

signi�cant amount of data, overlay peers are not speci�cally optimized for this dedicated task.

Processing application layer data competes foremost with other running programs on the peer,

possibly causing a higher delivery delay, especially in the event of high replications. This gets

even worse for RPs that serve as forwarder for a signi�cant number of peers.

In our scenario we have only focused on a single source. Multiple senders in the same broad-

cast domain would deliver their data to the same RP, which may increase the replication load

tremendously. In contrast, the pre�x �ooding distributes the data along multiple trees rooted

at the di�erent sources. For each of the distribution trees, all of the previously derived results

hold.

The Problem of Asymmetric Routes

Observing the hop count and packet replication distribution, the question arises about the

more fundamental reasons why the pre�x �ooding consistently outperforms Scribe. Leaving

aside the RP-issues discussed above, the main conceptual di�erence between data-driven tree

approaches and the pre�x �ooding follows from the method of tree establishment. In general,

data-driven trees will be constructed from the receivers towards the source (or RP). This is

also known as reverse path forwarding. The tree is optimal as long as the routing table entries

are invertible. But if links between nodes admit asymmetrical weights, a source may deliver

data along suboptimal paths. Such a problem does not arise, if the source constructs its tree

38

3.5 Discussion

according to forward routes.

In DHT-based group communication, the direction of tree establishment is even more impor-

tant. The distribution tree in Scribe is built from receiver subscriptions towards the RP, but the

packets �ow in inverse direction. As the association of pre�xes to nodes is not unique, two peers

may select a di�erent destination for the same pre�x. Thus diverse paths will be established,

even though packets could uniformly traverse the reverse directions following the RP point of

view. This results in many, reversely selected paths. For this reason, the RP is burdened with

an unbalanced replication load. On the opposite, the pre�x �ooding distributes the broadcast

along paths that are optimally chosen from the source location, limiting direct branches to the

number of pre�x neighbors. Pre�x �ooding solely uses forward-oriented directives, extracted

directly from unicast DHT routing control.

Optimized tree construction and data transmission throughout the underlay are key controls

for e�cient group communication in DHTs. This work has identi�ed that reverse path selection

in overlay and underlay turns into a severe problem in the presence of asymmetric routing.5

DHTs like Pastry implement a proximity selection criteria for �lling their routing tables, which

is designed for unicast routing and in forward direction. Employing the Pastry proximity-

selected neighborship to build data-driven trees as it is done in Scribe, takes counter-e�cient

e�ects on the construction of distribution trees.

Our pre�x-guided group management strictly adheres to forward-directed establishment of

distribution trees. It could be shown to generate e�cient group communication structures. The

approach is thus particularly promising for overlay multicast services.

Asymmetric routing paths are also a problem for native group communication, because com-

mon multicast routing is based on data-driven trees. Establishing forward paths in the Internet

is not as easy as it is in DHTs due to scaling issues. The pre�x �ooding changes the paradigm of

data-driven trees to source-driven distribution: Each source represents the root of an implicitely

de�ned distribution tree under appropriate performance values.

Rendezvous point-based distribution trees may degenerate to a large number of short-cuts,

solely branching at the RP. This leads to some exceptionally long routes from source to re-

ceivers in the overlay as well as the underlay. In contrast, the pre�x �ooding guarantees a

logarithmically limited replication load per peer with a balanced path length enabling a broad-

cast distribution in large overlays. The maximal numbers of replications can be adjusted by the

alphabet size of the overlay keys. These predictable and adjustable performance characteristics

are valuable properties of the overlay multicast solution, which is presented in the following

section.

5A large-scale analysis by Paxson revealed that 50% of the virtual Internet paths are asymmetric at the end of

1995 [70].

39

4 Pre�x-based Overlay Multicast

4.1 Introduction

Group communication based on a multicast function has been discussed since more than two

decades [5], but its global large-scale deployment is missing until now. As providers remained

hesitant to implement native multicast on the network layer, many ideas arose to distribute

data by replicating streams at end user devices. Such overlay schemes are now part of selected

applications. Nevertheless, the e�orts towards widely accessible multicast services recently

reactivated due to the roll out of appealing, but bandwidth intensive mass applications like

IPTV, or new, cheaply available broadcast-oriented transmission channels like DVB-H/IPDC.

In contrast to previous attempts, pragmatic solutions are now considered strategic, raising

deployment simplicity to prime focus. Hybrid schemes, which provide native multicast in end

user domains and utilize overlay multicast at inter-provider transitions [105], are particularly

attractive from this perspective.

Overlay multicast can be constructed on top of structured and unstructured P2P networks. In

its current state of development, the latter operate in a hybrid way by aggregating peers at fully

meshed 'super peers'. Such schemes may burden a high load onto their aggregators and tend to

not scale well to a large number of nodes due to high maintenance and routing costs. Unstruc-

tured overlay routing also limits reliability by introducing false negatives as caused by restricted

route information exchange. In contrast, structured overlays that implement Distributed Hash

Tables (DHTs), guarantee routing correctness within logarithmic bounds for key-based message

forwarding and state storage. Further on, based on their coherent routing layer, they easily

allow for the deployment of additional services. Several debates rank around DHT performance

and the question, whether structured overlays loose their scalability under churn, when high

maintenance overhead is required. Current studies reveal that general objections do not hold

and structured approaches clearly outperform the unstructured [20, 75].

Supplementing Internet services by DHTs is currently enforced by activities of the IETF

P2PSIP working group. Its generic peer-to-peer protocol will include a mandatory support

of a DHT [8]. Thus, it may be reasonable to assume that DHT substrates will populate the

future Internet. These may then also be used as underlying routing infrastructure for multicast

protocols.

Typical Internet-wide group applications, which largely bene�t from multicast, are of the

media broadcasting type. On the one hand, services like IPTV characterize a single source

scenario. On the other hand, collaborative social platforms, e.g., video chats and massive

multiplayer online games require a multi-source distribution tree. Both application classes

imply large multicast groups starting from some hundred receivers.

Current structured overlay multicast approaches either implement a source-speci�c network

�ooding, a source speci�c or a shared tree. Castro et al. have shown that �ooding schemes are

signi�cantly outperformed by tree based routing [23]. Bayeux, the only source speci�c approach,

41

4 Pre�x-based Overlay Multicast

is exposed to scalability problems, as each request to join a group is routed to a single node

managing that group. In contrast, shared trees introduce a dedicated overlay node, e.g., a

rendezvous point for data distribution. Multicast tra�c is concentrated on this single point of

failure. Providers as well as end systems, though, need a balanced mechanism, which scales

with large group size and provides predictable costs to control network provisioning. This is not

guaranteed by current approaches and requires a new, out-of the box thinking.

In this chapter we will present Scalable Adaptive Multicast on Bi-directional Shared Trees

(BIDIR-SAM), a novel overlay multicast approach for structured overlay networks. BIDIR-SAM

constructs a bi-directional shared tree, which enables an arbitrary overlay node to distribute

data along forward-oriented source-speci�c paths. It does not rely on any kind of rendezvous

point or bootstrapping and operates directly on top of a deployed, proximity-aware DHT using

a pre�x-based routing scheme. BIDIR-SAM exhibits strictly predictable costs, which scale

logarithmically with receiver sizes. BIDIR-SAM attains a similar multicast e�ciency scaling

factor as native group communication protocols, making it especially suitable for large and very

large multicast groups.

At �rst we will lay out the algorithm and discuss its basic properties along with four immediate

optimization options to enhance overlay redirections, underlay proximity selection, load sharing

and redundancy of the distribution system. Thereafter we model and analyze BIDIR-SAM

theoretically and in simulations, deriving its characteristic performance measures in comparison

to the generic shared tree approach Scribe. A brief reference to corresponding analytic work

and a discussion of the results conclude this chapter.

4.2 BIDIR-SAM � Scalable Adaptive Multicast on Bi-directional

Shared Trees

E�cient multicast packet distribution is based on distribution trees, where branching nodes

duplicate packets. A distribution tree is constructed on top of an unicast network, which

is provided in structured overlay networks by a key-based routing (KBR) layer. Typically, the

multicast tree spanning all receivers is rooted at the source or a rendezvous point. In contrast to

traditional approaches, which generate the distribution tree from (reversed) packet transmission,

BIDIR-SAM uses a pre�x tree, which is built solely of overlay addresses of receivers. The pre�x

alphabet size is con�gurable. This tree will serve as a source-speci�c distribution tree valid for

all sources anywhere throughout the network.

4.2.1 The Core Protocol

The main idea of BIDIR-SAM is to construct a pre�x-based multicast distribution tree, in which

a leaf is labelled with the overlay ID of a multicast listener. Multicast branching is performed

at inner vertices. Each inner vertex can be mapped to a DHT member if the label represents a

pre�x of the overlay node address. The corresponding peer for a pre�x will be resolved based

on a proximity-aware neighbor set.

In the following, we will describe the group management functions of BIDIR-SAM used to

maintain the distribution tree, and to forward data packets thereon.

42

4.2 BIDIR-SAM � Scalable Adaptive Multicast on Bi-directional Shared Trees

Group Membership Management

BIDIR-SAM uses a pre�x-based routing scheme as underlying KBR, which is provided by Dis-

tributed Hash Tables (DHTs) like Pastry. A broadcast pre�x tree can be constructed by iden-

tifying leaves as overlay keys and labelling recursively inner vertices with the longest common

pre�x of their children (cf. section 3.2).

Sending a packet from the root to the leaves of the broadcast pre�x tree will reach all overlay

peers, as branching will be performed at the inner vertices. This can be implemented as described

for the Prefix Flooding in section 3.2. In contrast to broadcast, multicast implements a

selective distribution strategy, where �nal (multicast) receivers represent a subset of the peers.

Thus, the multicast distribution tree in BIDIR-SAM is created from overlay keys of the receivers.

Any sender, which itself forms a leaf in the pre�x tree, will 'shift' the packet up to the (virtual)

root of the tree and initiate a forwarding according to pre�xes populated by receivers. In this

way, the pre�x tree is bi-directionally traversed for a sender.

All BIDIR-SAM peers will derive semantically identical trees in pre�x space, but will hold

only a selected, location-dependent knowledge therefrom. Routing correspondences are to be

extracted from KBR's routing table and thereby di�er from node to node. Multicast nodes need

not memorize the entire group speci�c multicast tree, but will only be required to persist the

pre�x neighbors of all associated vertices.

Each peer is a potential multicast forwarder, serving as an intermediate destination for a

pre�x it shares. Consequently, a new multicast receiver has to be announced to enable all

overlay nodes to store the corresponding neighboring pre�x for forwarding multicast data. This

pre�x neighbor represents the root of a subtree, which subsumes multiple multicast listeners.

Thus, only the �rst join and last leave has to be propagated outside this subtree.

To distribute data along a multicast distribution tree, a BIDIR-SAM peer K with overlay

ID K maintains a multicast forwarding table for each multicast group. This list contains all

pre�xes, which serve as destinations adjacent to K. For a group G, we denote the multicast

forwarding table by MFTG.

To join or leave a multicast group, a BIDIR-SAM node injects a state update into the unicast

pre�x tree. The �rst and last receiver of the group �ood their join and leave message in

the complete (unicast) overlay network. For all further group members, the state update is

propagated within the smallest subtree including receivers and covering the multicast listener.

The algorithm works as follows:

BIDIR-SAM Join/Leave Injection

� Invoking this function at peer K for group G

1 if MFTG = ∅
2 then Prefix Flooding Join/LeaveMessage To *

3 else Select L ∈MFTG : |L| ≥ |L′|, ∀L′ ∈MFTG
4 C ← LCP (L,K) � Creates root of subtree to �ood

5 Prefix Flooding Join/LeaveMessage To C

On the reception of a multicast state update the following function will be called to include

or delete multicast forwarding entries and to route the message down the unicast pre�x tree:

43

4 Pre�x-based Overlay Multicast

BIDIR-SAM Receive

� We denote the pre�x of length l and a key A with prefix(l,A)
� On arrival of message m for group G from peer P at node K

1 L ← LCP (P,K)
2 L′ ← prefix(|L|+ 1,P)
3 if type(m) = Leave

4 then MFTG ←MFTG \ L′
5 elseif type(m) = Join

6 then MFTG ←MFTG ∪ L′
7 Prefix Flooding m To L

The distribution of the state update is built upon the Prefix Flooding. According to our

observations in section 3.2, the BIDIR-SAM join/leave algorithm, thus, terminates and sends

the group membership messages to all peers of the 'local' subtree. Further on, it guarantees a

multicast spanning tree:

Theorem 4.1 If the overlay unicast pre�x neighbor sets are complete at all nodes, then the

multicast join algorithm of BIDIR-SAM constructs a spanning tree at each peer covering all

receivers.

Proof by induction. We assume that the unicast pre�x neighbor sets are complete and correct

on all overlay nodes. Induction is done with respect to the number of receivers g.

Base case: We consider a multicast group with one receiver, g = 1. In this case the multicast

listener sends a join message to all overlay peers by using the Prefix Flooding (cf. theorem

3.1). According to line 1 and 2 of BIDIR-SAM Receive each peer creates the multicast pre�x

neighbor towards the receiver by storing the pre�x in its multicast forwarding table (cf. line 7).

Consequently, the desired forwarding entries are established at all nodes.

Induction step: Assume that the BIDIR-SAM join algorithm creates a spanning tree covering

g receivers. We have to show that a join injection for listener g + 1 will initiate the required

forwarding table entries. According to the induction hypothesis, multicast listeners 1, . . . , g
are part of the multicast distribution tree. Among all forwarding entries at node g + 1 select

one, which attains the longest pre�x included in MFTG (cf. line 3 BIDIR-SAM Join/Leave

Injection). Evaluate the initial pre�x C for distributing the join message (cf. line 4).

For the pre�x C either C = ∗ or C 6= ∗ holds. The �rst case is equal to the subscription of the

�rst receiver and all overlay peers add the required entry which is successful according to the

base case.

Considering case C 6= ∗, the join message will be sent to all peers within the subtree rooted

at C. Then all overlay nodes, which are located in this pre�x subtree will add the pre�x

neighbor for g + 1 according to the pre�x �ooding (cf. line 5 of BIDIR SAM Join/Leave

Injection and line 1 and 2 of BIDIR SAM Receive). As C 6= ∗, there is at least one receiver
j, 1 ≤ j ≤ g inside this subtree, such that the longest common pre�x of j and g + 1 is C.
With respect to the induction hypothesis, j � and hence the subtree of pre�x C � is covered

by the multicast forwarding entries of the remaining peers. But members of this subtree will

implement a forwarding to node g + 1, which thereby is covered, as well.

44

4.2 BIDIR-SAM � Scalable Adaptive Multicast on Bi-directional Shared Trees

The inverse operation of joining a multicast group, to leave it, deletes pre�xes from multicast

forwarding tables. Leave signaling operates fully symmetric to join. With respect to line 4 of

BIDIR-SAM Receive and theorem 4.1, for the leave procedure holds:

Corollary 4.1 The BIDIR-SAM leave function initiated by a peer P deletes the corresponding

pre�x neighbor C on an arbitrary node P ′, if and only if there is no other receiver covered by C.

It is worth noting that node failures are covered by the BIDIR-SAM maintenance routine

(cf. section 5.4.1), which are based on this arguments. In section 4.2.2, we will explain a data

redundancy scheme for BIDIR-SAM.

Data Dissemination

Based on its group membership functions, BIDIR-SAM constructs a bi-directional shared tree

covering all overlay multicast listeners. The pre�x neighbors towards receivers are stored in a

decentralized multicast forwarding tableMFTG, which is controlled individually by each overlay

node. An arbitrary peer can act as multicast source, while it sends the data to all entries in

MFTG. The packets will then be forwarded to the leaves of the multicast tree (cf. �gure 4.1).

Conceptually this corresponds to the Prefix Flooding approach, whereas branching is guided

by the multicast forwarding table:

BIDIR-SAM Forwarding

� On arrival of packet with destination pre�x C
� for group G at DHT node of ID K

1 for all Ni IDs in MFTG
2 do if LCP (C,Ni) = C � Ni is downtree neighbor
3 then Cnew ← Ni
4 Forward packet to Cnew

As the forwarding algorithm equals the Prefix Flooding, only based on a selective routing

information base, the observations in section 3.2 hold for BIDIR-SAM, as well: Data is sent to

roots of sub-trees known from the multicast forwarding table, which is a subset of the unicast

pre�x-table. Packet distribution follows the proved routing rules. Thus, all multicast listeners

receive the data exactly once and the algorithm terminates.

4.2.2 Optimization Options

The BIDIR-SAM core protocol creates and manages a generic shared family of source trees in

pre�x space, which allow for unique multicast data transmission from any node in a pre�x-

optimized fashion. This basic scheme is open to adding optimizations or additional features as

desired by the application or network scenario. In the following, we sketch options to optimize

underlay performance, i.e., to minimize hops and improve proximity, and to add load sharing

and scalable redundancy to the protocol. These improvements come into operation without

increasing the BIDIR-SAM signaling load or management overhead.

45

4 Pre�x-based Overlay Multicast

001∗

00∗

0001∗

000101

1∗

111∗

∗

R
R

R

R

R

S

000111001101111101 100101111001

Figure 4.1: BIDIR-SAM Routing Directed by a Binary Pre�x Tree

Option 1: Reducing One-way Branches

BIDIR-SAM creates the multicast distribution tree by recursively building longest common

pre�xes among receivers and its parent vertices. Thus, one-way branches are eliminated and

the symbolic path-compressed tree is rooted at �*�. However, the underlying pre�x routing,

which forwards data to an arbitrary overlay node matching the destination pre�x, may induce

single branching paths. This will be ine�cient, if intermediate forwarders do not belong to the

multicast group.

An example is the following scenario: Assuming a non-multicast peer sharing the pre�x

neighbor of the source with its identi�er, the unicast pre�x-based routing table may include

this peer as destination entry. If then only one receiver is located within this subtree, routing

proceeds via the non-multicast peer to the receiver and a one-way branch occurs.

To overcome this problem, BIDIR-SAM can be extended to store the IP address of the peer

initiating the multicast join in addition to the pre�x neighbor identi�er in its multicast forward-

ing table. The data distribution will then proceed according to these underlay information.

Thus, packets will be delivered directly to peers, which in turn act as multicast receivers.

With respect to the underlay proximity selection provided by the KBR layer, we suggest a

con�gurable parameter to apply this optimization for pre�x neighbors at a speci�c tree level.

As observed in the example of Pastry, proximity selection shows a noticeable e�ect only for

distant keys, i.e., short pre�xes [82]. Consequently, the optimization should be used for levels

greater than this parameter, e.g., three for Pastry, and may be adjusted for other DHTs.

Option 2: Receiver Proximity Selection

Overlay peers participating in a BIDIR-SAM multicast network will receive membership mes-

sages regularly. At an overlay node, the number of joins received from di�erent peers may be

signi�cant in the case of large receiver numbers within a pre�x neighborhood. These information

can be harvested to improve proximity selection.

46

4.2 BIDIR-SAM � Scalable Adaptive Multicast on Bi-directional Shared Trees

In detail, a multicast join will be received at the KBR layer and delivered to the upper

BIDIR-SAM tier. During this operation, an overlay node may seamlessly interpret the message

originator as candidate for proximity selection. In the example of Pastry, the sender of a join

would simply be examined for selection into the Pastry neighborhood set. The latter could

proceed conventionally by proximity probing or � in a time-synchronized scenario � by time

stamps included in join messages. Such continuous proximity harvesting will cause

• a seamless improvement of the general proximity information base in Pastry and thereby

increase the unicast overlay routing e�ciency;

• an enhanced likelihood of multicast receivers in pre�x neighborhood to be chosen by

proximity awareness as part of the distribution tree. Hence intermediate non-multicast

hops will be implicitly reduced.

From the perspective of a layered overlay architecture as discussed in detail in section 5.1,

this approach must be considered as cross-layer design. In cases where layer violations face

objections, a receiver proximity selection may be separately implemented by maintaining a

receiver neighborhood table on the BIDIR-SAM tier and issuing suitable nodes as nextHopNode

hint in the message forward call of the common API described in section 5.1.

Option 3: Load Sharing via Relays

All peers in an overlay network that operates BIDIR-SAM multicast services is equally suited

to serve as a content root for a given group. This capability may be exploited for load sharing

purposes in the following way. Any originator of voluminous packet streams e.g., in an IPTV

application, may choose one or several relays to assist in data distribution by simply transmitting

selected packets with a destination pre�x of zero length. A node receiving a packet with empty

destination pre�x will forward it across the pre�x tree root '*', which is equivalent of being the

root of the multicast distribution tree. Hence, relays can be activated without signaling.

Utilizing relays will disburden the source of its replication load in parts, but add an extra hop

to the transmission path. Further on the originator may receive relayed packets back, whenever

it is a receiver or located on the distribution tree of the relay. To avoid packet replay and

redistribution, sender and relay can proceed as follows. The source selects a relay that shares

a pre�x C as long as possible with its own ID. It then forwards data to the subtree de�ned

by C, while the relay omits packet replication to the same subtree. In proceeding this way,

data continues to be disseminated in a unique fashion. As the analysis in sections 4.3.1 and

4.3.2 will reveal, the forwarding and replication load decreases exponentially in pre�x length.

Consequently, if the sender succeeds in selecting a relay with a long common pre�x, it will rarely

experience the need of additional packet forwarding.

This relay-based load sharing approach does appear very close to SplitStream [21] when

regarded from a super�cial perspective. Like BIDIR-SAM load sharing, SplitStream splits

streams into slices and distributes slices independently via di�erent rendezvous points. These

multiple Scribes are obtained by modifying the initial pre�x of the RP address and likewise leads

to a unique data dissemination. Aside from additional signaling requirements in SplitStream,

however, this approach accumulates the large �uctuations of Scribe with the result of huge

additional delays and intolerable jitter at the receiver site. Simulating a group of 256 receiver

without node failures, Birrer and Bustamante [14] report on an overall increase of about 100 % in

47

4 Pre�x-based Overlay Multicast

mean and 1.000 % in standard deviation of the latency. Conversely, BIDIR-SAM load sharing

always operates on the identical pre�x tree, and admits low, rigorously bound performance

variations. Relaying packets will add the delay of a single, unicast hop and will retain its overall

performance.

Option 4: r-Redundancy for Data and Paths by Network Coding

BIDIR-SAM multicast delivers packets uniquely via a well de�ned, deterministic tree. In the

presence of churn, node and link failures or other disturbances it is desirable to add a certain

degree of data redundancy to the distribution system. More precisely, an r-redundancy toler-

ating the loss of one packet out of each sequence of r may be su�cient to sustain information

integrity at an appropriate degree of con�dence.

An e�cient method to procure redundancy at the packet level has been recently introduced

by network coding [6, 58]. Its underlying idea is to create a redundant packet from a sequence

of r by 'adding' them all using XOR operations. If the resulting r + 1 packets are transmitted,

all original r packets can be recovered under the loss of any one of the transmitted datagrams.

A straight application of this scheme leads to an r-redundancy for data.

Many disruptive scenarios like link and node failures are likely to cause damage at more than

one occasional packet. Redundant paths are required to circumvent these defects. BIDIR-SAM

provides two natural options for path redundancy on top of DHT error resilience. At �rst,

if a forwarding node experiences a neighboring link or node failure, it can pass packets with

unchanged destination pre�x to any other overlay node sharing the same pre�x. The receiver

will then act as a relay and continue to disseminate the tra�c �ow substitutional. At second,

in scenarios where loss of the UDP data cannot be foreseen, e.g., in wireless mesh networks, r-

redundant distribution paths can be organized by using an approach similar to the load sharing.

A source willing to distribute data at an r-redundant level will perform network coding for

r-sequences of its packet stream. It will further select r relays, preferably of di�ering pre�x

initials, as discussed in the previous option on load sharing. Each sequence of r packets as

well as the coded datagram are then distributed among the r + 1 senders. Choosing senders of

di�erent pre�x initials will minimize a coincidence of the r + 1 pre�x trees and will thus lead

to the highest frequency of disjoined paths. Any node/link failure occurring on a single overlay

distribution tree will then cause loss of one packet per r-sequence and can be fully compensated

by the remaining r data units. Thus BIDIR-SAM can provide a full r-redundancy in data and

paths without modi�cation or additional signaling.

4.3 Performance Analysis

In this section we will analyze the multicast performance of BIDIR-SAM in comparison with

the rendezvous point-based scheme Scribe. Both approaches require an explicit group manage-

ment to dynamically construct the distribution tree. In addition to the metrics introduced in

section 3.3, i.e., the tra�c load, replication load and hop count1, we therefore extend the

measurement to the following quantities:

Multicast forwarding entries corresponds to the number of downstream entries required

at a peer. This value represents the storage requirements at a multicast peer. It also

1We omit the travel time and delay penalty, as results follow directly from the broadcast scenario.

48

4.3 Performance Analysis

characterizes the number of children per overlay node in the distribution tree. Thus, it

describes an upper bound for the packet replications in BIDIR-SAM and corresponds to

the replication load in Scribe.

Signaling load measures the average number of join messages initiated by the multicast rout-

ing protocol in response to the subscription of a new multicast listener. This absolute

value quanti�es the cost at peers of incorporating a new receiver in the multicast delivery

tree.

Join injection level describes the position at which a multicast subscription will be injected

into the path compressed pre�x tree. This metric is only applicable in BIDIR-SAM and

re�ects the height of subtrees, which need to be provisioned by a join.

Replication load per tree level counts the number of packet replications for a multicast

forwarder at a speci�c level in the distribution tree. This di�erential measure characterizes

the branching shape of the source speci�c tree.

Forwarding fairness is the ratio of multicast receivers acting as forwarders and the overall

number of forwarders. This metric expresses the fairness of group members over non-

multicast nodes in an overlay, which maintains multiple services.

Multicast e�ciency de�nes similar to [26] the ratio of the average number of traversed overlay

hops by distributing the data via multicast and the average overlay unicast path length.

This normalized measure re�ects the economic e�ect of multicast over repeated unicast.

4.3.1 Analytical Results

The theoretical analysis of the BIDIR-SAM multicast scheme will require more subtle consid-

erations of the operations in pre�x space than in the case of pre�x �ooding. The more complex

modeling approach pursued in the following admits the potential of explaining processes more

accurately and reproducing simulation values in signi�cant detail, but expressions partly fail to

reduce to simple closed forms.

To clarify the underlying model of our analysis, we will �rst give an overview of the concepts

and notations used further on. Common properties of the pre�x-based group model are outlined,

which will be needed in the following line of arguments.

The General Model and Basic Properties

For a given key space of alphabet size k and key length h, we consider the corresponding k-ary

pre�x tree as basic structure, cf. section 3.2. Therein N overlay nodes {N} are placed at leaf

nodes of the pre�x tree, such that their keys are uniformly chosen from the pre�x alphabet. In

particular, for any node K with key K, the probability of attaining a speci�c digit x reads

P (δi(K) = x) =
1
k
, where δi(K) denotes the i−th digit of K (4.1)

Consider an arbitrary pre�x C of length j. The probability for a random overlay node to

share this pre�x equals (1
k)
j . Inspecting the distribution of all overlay nodes in pre�x space, it

immediately follows that any (ordered) sequence of keys, l keys with pre�x C and N − l keys

49

4 Pre�x-based Overlay Multicast

not sharing C, occurs with probability (1
kj)l(1 − 1

kj)N−l. Accounting for all possible orderings,

this yields the node distribution in pre�x space,

P (|{N ∈ {N}| LCP (C,N) = C}| = l) =

(
N

l

)(
1
kj

)l (
1− 1

kj

)N−l
, (4.2)

which is Binomial with mean N
(

1
kj

)
and variance N

(
1
kj

) (
1− 1

kj

)
[2].

Recalling that the pre�x C of length j correspondents to the root of a subtree Th−j of height
h− j as visualized in �gure 3.4, equation 4.2 also describes the distribution of nodes populating

this subtree.

The keys representing the overlay nodes span a random recursive k-ary tree with inhomoge-

neous branching rates pj(k−1), which extends the discussion of section 3.3.1. Consider an inner
vertex representing the pre�x C at level j − 1 on the path to a given node S with key S. The
pre�x tree will branch at this vertex, if a node K with key K exists, such that LCP (S,K) = C.
The latter is equivalent to the existence of a node that attains a dedicated pre�x of length

j − 1, and any of k − 1 from k values at the j-th digit. The probability that none of the N − 1

remaining nodes carry a dedicated pre�x of length j equals
(
1− 1

kj

)N−1
. Hence the branching

probability of the overlay pre�x structure at level j − 1 reads

P (Branch at niveau j − 1) =

(
1−

(
1− 1

kj

)N−1
)
· (k − 1) = pj · (k − 1). (4.3)

Values of pj are not constant, but decrease exponentially in j, leading to high branching prob-

abilities close to the tree root, but rapidly decaying as the pre�x tree is descended. Note that a

consistent transition to constant branching probabilities at a fully populated pre�x tree derives

from the limit

(
1−

(
1− 1

kj

)N−1
)
−→N→∞ 1.

Any multicast group arranges within this overlay pre�x structure. Consider a group G of g

receivers. We assume that receivers are independently chosen among overlay nodes with the

uniform probability rg = g
N .

2

The BIDIR�SAM algorithm aggregates multicast receivers according to longest pre�xes. For

a given pre�x C of length j, the probability that a receiver shares C is therefore of general

relevance.

Theorem 4.2 For a multicast group G resident in a pre�x-structured overlay of k-ary alphabet

and N nodes, the probability that a given pre�x C of length j is attained by at least one out of

g receivers is given by

P (| {G ∈ G| LCP (C,G) = C} | ≥ 1) = 1−
(

1− g

kjN

)N
(4.4)

= 1− e−
g

kj +O
(

1
N

)
(4.5)

Proof. Assume the number NC of nodes with pre�x C in the overlay equal to l. The conditional

probability that none of the nodes is a multicast receivers then reads

P (| {G ∈ G| LCP (C,G) = C} | = 0 ‖ NC = l) = (1− rg)l (4.6)

2This assumption is supported in both, theory by [71] and Internet measurements by [24].

50

4.3 Performance Analysis

Using equation 4.2, the unconditional probability that no receiver shares C evaluates to
P (| {G ∈ G| LCP (C,G) = C} | = 0)

=
N∑
l=0

P (| {G ∈ G| LCP (C,G) = C} | = 0 ‖ NC = l) · P (NC = l)

=
N∑
l=0

(1− rg)l
(
N

l

)(
1
kj

)l (
1− 1

kj

)N−l

=
N∑
l=0

(
N

l

)(
1− rg
kj

)l (
1− 1

kj

)N−l

=

(
1− rg + kj − 1

kj

)N
=
(

1− g

kjN

)N
,

where the last line was obtained by evaluating the binomial expansion series [2]. Taking the

complementary weight and observing that ex =
(
1 + x

N

)N +O(1
N) proves the theorem.

It is worth noting that in large overlay networks the pre�x distribution of multicast receivers

is e�ectively independent of the overlay size.

Size of Multicast Forwarding Tables

The multicast distribution tree forms a subtree within the entire pre�x tree and shares the

structural properties of the overlay. Restricting considerations to this substructure, we can

adapt theorem 3.3, which was not bound to modeling assumptions.

Theorem 4.3 For any overlay node in a k-ary pre�x tree with g leaf nodes (receivers), the

number of adjacent vertices is limited by log2(g)(k − 1). This bound equally limits the number

of multicast forwarding table entries.

Proof. Any overlay node is situated as a leaf in the pre�x tree and has all vertices on the

shortest path to the root associated with it. Thus the number of neighbors equals the sum of

the neighbors at each associated vertex. For an alphabet of base k the latter is bound by k− 1.
The number of vertices towards the tree root is limited by the height of the path compressed tree,

which is maximal when all branches are binary. Consequently for a pre�x tree with g leaves, the

maximal height is given by log2(g). Forwarding within the overlay is solely performed to on-tree
neighbours, whose IDs are the states any overlay member needs to store in its forwarding table.

Returning to our pre�x distribution model, we now want to determine the distribution of

multicast forwarding states on the pre�x tree. At every level j of the pre�x tree, an overlay

node may face 0 to k − 1 neighboring vertices connecting di�erent receivers, which follow a

binomial distribution:

Theorem 4.4 In the BIDIR-SAM multicast scheme of a group with g receivers, the probability

distribution P (j, l) that a given overlay node holds l multicast forwarding entries at pre�x level

j reads

P (j, l) =

(
k − 1
l

)(
1− e−

g

kj+1

)l (
e
− g

kj+1

)k−1−l
+O(

1
N

) (4.7)

51

4 Pre�x-based Overlay Multicast

Proof. For a given node consider the possible vertices connecting to the k−1 subtrees at level j.
A forwarding state for a particular vertex will be required, if and only if a receiver exists in the

corresponding subtree. Being member of a particular subtree with root at level j is equivalent

to carrying a pre�x of length j + 1, its probability was given in equation 4.5.

For any individual selection of l among the k−1 vertices, the probability of attaining these l for-

warding states is approximated by
(
1− e−

g

kj+1

)l (
e
− g

kj+1

)k−1−l
. Adding all possible orderings

proves the theorem.

The multicast forwarding table of a node contains the entries for neighbors at all levels of the

pre�x tree. With the help of theorem 4.4 we are now able to compute the mean value of the

table sizes along with its standard deviation:

Corollary 4.2 Denote by MFT (g) the multicast forwarding table size of a node in an overlay

participating in the BIDIR-SAM multicast with g group members. Then

< MFT (g) > =
h∑
j=1

(k − 1)
(
1− e−

g

kj

)
(4.8)

σ(MFT (g)) =

 h∑
j=1

(k − 1)
(
1− e−

g

kj

) (
e
− g

kj

)1/2

(4.9)

Proof. According to the binomial distribution 4.7, the average number of table entries for a given

subtree level j is given by (k − 1)
(
1− e−

g

kj+1

)
. The average total number of states evaluates

as the sum of the averages over all levels (0 . . . h− 1), which proves equation 4.8.

The variance of the table distribution at level j is given by (k − 1)
(
1− e−

g

kj+1

) (
e
− g

kj+1

)
. It

follows from the independence assumption in pre�x selection that the total variance can be

calculated as the sum over the conditional variances per level. Taking the square root yields

the standard deviation 4.9.

Unfortunately there are no closed expressions for the above results and we are unable to �nd

a valid asymptotic expansion. The mean function is plotted in �gure 4.2. Table entries remain

signi�cantly below its upper bound given in theorem 4.3, reproducing nicely the logarithmic

dependency on g. The growth with the pre�x alphabet size k remains sublinear.

Replication Load

In this section we want to quantify the replication load of the multicast data distribution. Its

maximal value is de�ned by the number of forwarding table entries and comes into e�ect with a

destination pre�x of zero length. Routing from zero pre�xes occurs only at the multicast source

and leads to the immediate implication of theorem 4.3:

Corollary 4.3 The multicast replication load for any overlay node remains less or equal to

log2(g)(k − 1).

52

4.3 Performance Analysis

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

k = 1 6

k = 4

 M e a n V a l u e
 U p p e r B o u n d

<M
ult

ica
st

Fo
rw

ard
ing

 En
trie

s>
 [#

]

G r o u p S i z e [# R e c e i v e r s]

k = 1 6

k = 4

Figure 4.2: Mean Entries and Upper Bounds of the Multicast Forwarding Tables as a Function

of Receiver Numbers for Alphabets of k = 4 and k = 16.

Following the line of the above argument, the replication load at the source is described by

the full multicast forwarding tables and estimated by the quantities of corollary 4.2. In the

general case, multicast forwarding occurs in combination with a destination pre�x of length j,

which rules out all table entries of shorter pre�x length. Consequently, replication of packets

with a destination pre�x of length j is only performed for those table entries of pre�x longer

than j, which immediately yields the following estimates from corollary 4.2:

Corollary 4.4 Denote by RPL(j, g) the multicast replication load at a node in an overlay

participating in the BIDIR-SAM multicast with pre�x length j. Then

< RPL(j, g) > =
h∑
i=j

(k − 1)
(
1− e−

g

ki

)
(4.10)

σ(RPL(j, g)) =

 h∑
i=j

(k − 1)
(
1− e−

g

ki

) (
e
− g

ki

)1/2

(4.11)

Characteristic distributions of the replication load are drawn in �gure 4.3, representing a fair

balance up until 0,6 child nodes for larger networks. As compared with the pre�x �ooding,

gradients are less pronounced at low values and show reduced steepness with increasing group

size. Smaller alphabets noticeably smoothen the distributions, which suggests k to serve as a

tuning parameter of the multicast distribution tree.

Signaling Load

Signaling in the BIDIR-SAM scheme consists of the Join and Leave messages, which are

�ooded to context-speci�c subtrees of the overlay. In this section we want to calculate the

53

4 Pre�x-based Overlay Multicast

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 g = 1 0
 g = 1 0 0
 g = 1 0 0 0
 g = 1 0 0 0 0

0 1 2 3 4 5 6
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

(a) k = 4

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 g = 1 0
 g = 1 0 0
 g = 1 0 0 0
 g = 1 0 0 0 0

0 1 2 3 4 5 6
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

(b) k = 16

Figure 4.3: Normalized Distributions of the Mean Replication Load for Di�erent Group Sizes g

and Pre�x Alphabets k.

distribution of the pre�x �ooding along with the expected number of �ooded nodes. Due to the

symmetry of these operations, the following analysis is restricted to Join.

Consider an established group G of g receivers in the overlay network. A node newly joining

group G will change the group members to g+1 in distributing its Join to the smallest subtree

containing its own ID and at least one previous receiver. The probability P (j, g) that a Join
injection occurs at level j, or at a subtree of height h − j, is equal to the probability that one

of the previous g group members shares the pre�x of length j with the newly joining node, but

none does with the extended pre�x of length j + 1. Hence using equation 4.5, we derived

Theorem 4.5 The probability P (j, g) for distributing a BIDIR-SAM Join or Leave message

within a pre�x tree at injection level j reads

P (j, g) =
(
1− e−

g

kj

)
e
− g

kj+1 +O(
1
N

), (4.12)

where g is the number of group members prior to signaling.

From the distribution 4.12, expressions for the expected size of the �ooded subtree can be

deduced, as well as the expected number of nodes therein.

Corollary 4.5 The expected injection level of the pre�x tree for BIDIR-SAM Join or Leave

signaling is given by
h∑
j=0

j
(
1− e−

g

kj

)
e
− g

kj+1 , (4.13)

while the expected number of �ooded nodes is well approximated by

N

{
(1− e−g)e− g

k +
k

g(k + 1) ln k

((
e
− g

kh+1 − e− g
k

)
(k + 1) + e−

g(k+1)
k − e−

g

kh+1 (k+1)
)}

,

(4.14)

where g is the number of group members prior to signaling.

54

4.3 Performance Analysis

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0
1
2
3
4
5
6
7
8
9

1 0

<In
jec

tio
n L

ev
el>

R e c e i v e r R a n k [#]

k = 4

k = 1 6

(a) Injection Level

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<Is
su

ed
 Jo

ins
>/N

 [#
]

R e c e i v e r R a n k [#]

 k = 4
 k = 1 6

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(b) E�ective Joins per Receiver

Figure 4.4: Mean Injection Level and Normalized Message Numbers of the Multicast Join/Leave

Signaling as a Function of Receiver Rank for Alphabets of k = 4 and k = 16.

Proof. Given the probability distribution P (j, g) of BIDIR-SAM signaling, the mean injection

level immediately evaluates to
∑h
j=0 jP (j, g) =

∑h
j=0 j

(
1− e−

g

kj

)
e
− g

kj+1 .

To derive the mean value of �ooded nodes, we �rst refer to the Binomial distribution 4.2 of

nodes populating a pre�x subtree of height h − j. Hence the conditional expectation of nodes

below a given pre�x level j equals N(1
kj). The unconditional expectation of nodes �ooded with

signaling messages then calculates as follows:

h∑
j=0

N

(
1
kj

)
P (j, g)

= N
h∑
j=0

(
1
kj

)(
1− e−

g

kj

)
e
− g

kj+1 +O(
1
N

≈ N

{
(1− e−g)e− g

k +
∫ h

j=0

(
1
kj

)(
1− e−

g

kj

)
e
− g

kj+1 dj

}

= N

{
(1− e−g)e− g

k +
k

g(k + 1) ln k

((
e
− g

kh+1 − e− g
k

)
(k + 1) + e−

g(k+1)
k − e−

g

kh+1 (k+1)
)}

,

where the integral was obtained from the Euler summation formula and solved using the sub-

stitution x = 1
kj .

The results of corollary 4.5 are displayed in �gure 4.4 as functions of the joining receiver rank.

The essentially complementary quantities admit a logarithmic growths in the injection level, i.e.,

the level of descend within the pre�x tree, on the one hand, and a strong exponential decay in

the expected number of �ooded nodes on the other. The mean number of messages issued for

Join/Leave signaling reduces to below 10 in network sizes above 1.000. These results, which are

well reproduced in the simulations, remain compatible with the low signaling costs of Scribe.

Signaling expenses decrease almost linearly with k. Again, k serves as a tuning parameter acting

in the same direction as for the replication load.

55

4 Pre�x-based Overlay Multicast

Hop Count

The pre�x routing of the BIDIR-SAM multicast scheme coincides with the pre�x �ooding de-

scribed in section 3.2. Multicast receivers are selected from overlay nodes at random without

inducing bias. Consequently, the overlay hop count distribution of packets reaching multicast

receivers is identical to the pre�x �ooding case and we immediately inherit the general estimates

from theorem 3.5:

Theorem 4.6 Any multicast receiver in an overlay of N receivers that performs a pre�x routing

using an alphabet of k ≥ 2 digits will receive a packet after at most log2(N) hops. In the presence

of Pastry overlay routing, the number of hops attained on average equals log2b(N) with k = 2b.

In a typical overlay multicast setup, a group G will admit a number of g receivers, which is

small compared to the total number N of overlay nodes. N in turn falls short with respect to the

pre�x address space, why sparsity of receivers in the distribution tree becomes more important.

Compliant with the model outlined above, we thus want to derive a hop count distribution

that represents sparsely scattered receivers in a pre�x tree more closely than the homogenous

branching model of section 3.3.1.

On the path from the source to the receivers, a multicast packet traverses an overlay hop,

whenever the distribution tree branches at the corresponding pre�x C. Taking the branching

rate given in equation 4.3, the corresponding recurrence relation of the hop count frequency can

be written as

fh,k,N (j) = fh−1,k,N (j) +

(
1−

(
1− 1

kj

)N−1
)
· (k − 1) · fh−1,k,N (j − 1) (4.15)

with f1,k,N (0) = 1, f1,k,N (1) =
(

1−
(
1− k−1

)N−1
)

(k − 1).

Solving the recursion leads to

Theorem 4.7 The hop count frequency fh,k,N attained at pre�x routing on N overlay nodes

with independent uniformly distributed identi�ers is given by

fh,k,N (j) =

(
h

j

)
·
j∏
i=0

(
1−

(
1− k−i

)N−1
)
· (k − 1)j . (4.16)

Proof. In the general model outlined above, we have derived that an independent uniform

distribution in key space generates branching probabilities as de�ned in equation 4.3. Thus it

remains to be shown that fh,k,N (j) satis�es the rate equation 4.15:

fh,k,N (j) =

(
h

j

)
·
j∏
i=0

(
1−

(
1− k−i

)N−1
)
· (k − 1)j

=

(
h− 1
j

)
·
j∏
i=0

(
1−

(
1− k−i

)N−1
)
· (k − 1)j

+
(
1− (1− k−j)N−1

)
(k − 1) ·

(
h− 1
j − 1

)
·
j−1∏
i=0

(
1−

(
1− k−i

)N−1
)
· (k − 1)j−1

= fh−1,k,N (j) +

(
1−

(
1− 1

kj

)N−1
)
· (k − 1) · fh−1,k,N (j − 1),

56

4.3 Performance Analysis

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 N = 1 0 0
 N = 1 0 0 0
 N = 1 0 0 0 0

(a) k = 4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 N = 1 0 0
 N = 1 0 0 0
 N = 1 0 0 0 0

(b) k = 16

Figure 4.5: Normalized Hop Count Distributions for k = 4 and k = 16.

which proves the theorem.

The hop count frequency fh,k,N (j) is plotted in �gure 4.5 in normalized form. These (also

numerically) delicate distributions are in signi�cantly better agreement with the simulation

values as the previous results in the pre�x �ooding model, cf. �gure 3.6. Mean and width of

the distributions grow as k decreases, acting in opposite direction of the branching properties

investigated above. A BIDIR-SAM instance optimizing replication and signaling load by using

a small pre�x alphabet will encounter a moderate increase of routing hops in packet delivery.

Multicast data may be forwarded by group members, as well as by uninvolved overlay nodes.

If we restrict our consideration to the members of a given group G involved in forwarding, the

probability of branching at a pre�x of length j changes to expression 4.5, and the hop count

recurrence relation 4.15 turns into

fh,k,g,N (j) = fh−1,k,g,N (j) +
(
1− e−

g

kj

)
· (k − 1) · fh−1,k,g,N (j − 1) +O

(
1
N

)
(4.17)

with f1,k,g,N (0) = 1, f1,k,g,N (1) =
(
1− e− g

k

)
(k − 1).

Using the identical line of arguments as in the proof of theorem 4.7 yields

Theorem 4.8 The hop count frequency fh,k,g,N of traversing g multicast receivers by pre�x

routing in an overlay network of N nodes with independent uniformly distributed identi�ers is

given by

fh,k,g,N (j) =

(
h

j

)
·
j∏
i=0

(
1− e−

g

ki

)
· (k − 1)j +O

(
1
N

)
. (4.18)

The ratio of forwarders, which are already receivers, over all routing nodes is of particular

interest, as this may serve as a measure of fairness, while at the same time multicast forwarding

and delivery coincide.

57

4 Pre�x-based Overlay Multicast

0 2 4 6 8 1 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

1 , 2

f h,k
,g,

N/f h,k
,N

T r e e L e v e l

 g = 1 0
 g = 1 0 0
 g = 1 0 0 0

(a) k = 4

0 2 4 6 8 1 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

1 , 2

f h,k
,g,

N/f h,k
,N

T r e e L e v e l

 g = 1 0
 g = 1 0 0
 g = 1 0 0 0

(b) k = 16

Figure 4.6: Fraction of Multicast Group Members among Forwarders in a Network ofN = 10.000
Nodes for k = 4 and k = 16.

Corollary 4.6 The fraction of multicast receivers acting as data forwarder in the pre�x routing

scheme evaluates to

fh,k,g,N
fh,k,N

(j) =
j∏
i=0

(
1− e−

g

ki

)
1− (1− k−i)N−1

=
j∏
i=0

1− ki + e
− g

ki (ki − 1)
1− ki + ki(1− k−i)N (4.19)

The portion of multicast forwarders, which are group members themselves, is shown in �gure

4.6. Receivers reached within a small number of hops experience a high probability of traversing

only receivers, while packets traveling on longer paths are more likely to utilize noninvolved

forwarders. Larger group sizes and smaller pre�x alphabets reduce this degree of 'unfairness',

so that in a setup of g = 1000, k = 4, N = 10.000 clearly 50% of the packets are delivered on

average for up to 5 hops solely performed via multicast group members.

4.3.2 Simulation Results

In this section we will analyze the performance of BIDIR-SAM in comparison with a rendezvous

point-based overlay multicast approach. To stay consistent with the pre�x �ooding (cf. section

3.3.2), for the latter, Scribe is chosen in its standard implementation [22]. Unless denoted

otherwise, BIDIR-SAM is likewise used in its standard, unoptimized version. BIDIR-SAM as

well as Scribe are implemented based on the key-based routing implementation Pastry. The

multicast simulation starts after a proactive routing maintenance has �lled complete Pastry

routing tables. The costs for this additional routing maintenance are low, as incomplete tables

rarely occur.3

The simulations are performed on the same network simulator platform as the pre�x �ooding,

OMNeT++ 3.3 [99], extended by the OverSim-20080416 [10] package.

The general simulation setup corresponds to our analysis of the pre�x �ooding (cf. section

3.3.2): Pastry is con�gured to its original version with a key length of 128 bit and a varying

pre�x alphabet size. To concentrate on structural insights in the multicast routing protocols, we

3In a typical Pastry routing table, many entries remain empty due to non-existent node keys. This can be a

priorily conclude from optimized probing as described in section 5.4.3.

58

4.3 Performance Analysis

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s
 L o g a r i t h m i c f i t

<M
ult

ica
st

Fo
rw

ard
ing

 En
trie

s>
 [#

]

G r o u p S i z e [# R e c e i v e r s]

B I D I R - S A M

S c r i b e

(a) k = 4

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

<M
ult

ica
st

Fo
rw

ard
ing

 En
trie

s>
 [#

]

G r o u p S i z e [# R e c e i v e r s]

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s
 L o g a r i t h m i c f i t

B I D I R - S A M

S c r i b e

(b) k = 16

Figure 4.7: Mean Multicast Forwarding Entries per Overlay Node for Pre�x Alphabet Sizes k

and Varying Overlay Dimensions

select again the Simple model of OverSim [9] as underlying network. We will analyze reliability

aspects in future work, thus, we neglect any churn. For additional reasons we refer to section

3.3.2.

The simulations are conducted for a small, medium and large overlay of 100, 1.000 and 10.000

nodes.4 Among all peers, one multicast source is chosen uniformly distributed, which sends its

data to a multicast group selected with equal weights. Receivers are also picked up uniformly

distributed, but distinct from the source. Group sizes vary from 25 %, 50 % to 75 % subscription

ratio. Each scenario is sampled with the same parameter settings until it is converged. We

average the results over all samples with the same settings. Again, this is detailed out in section

3.3.2.

The implementation of BIDIR-SAM has been tested by simulating the broadcast scenario

based on an all peer subscription. The outcomes con�rm with our results for the pre�x �ooding.

Further on, repeated manual checks have been performed for small networks.

Multicast Forwarding Table Size

The average multicast forwarding table size is visualized in �gure 4.7 as a function of the number

of receivers for di�erent network sizes. Both schemes clearly scale independently of the overlay

dimension due to the local view of multicast forwarders.

Focusing on mean values, Scribe outperforms BIDIR-SAM as the average number of entries

grows only marginally with the group size and remains below 5. However, all BIDIR-SAM

tables increase with strict logarithmic bounds with the number of receivers, which complies

with the scaling properties of the underlying DHT. It is worth noting that the additional entries

in BIDIR-SAM provide inherent redundancy as distributed pre�xes cover multiple peers.

Although the average number of tables entries in Scribe is almost constant, the �uctuation

per node is signi�cant. As indicated by the error bars in �gure 4.7, the standard deviation may

be larger by one order of magnitude than the average value. Maximal values for Scribe range up

to 5600 entries for large overlays with a high receiver subscription ratio. Figure 4.8 reveals that

4In general, an overlay consisting of 10 nodes represents an unusual deployment scenario and was omitted in

this analysis.

59

4 Pre�x-based Overlay Multicast

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
ies

>

M u l t i c a s t F o r w a r d i n g E n t r i e s [#]

 2 5 R e c e i v e r s 2 5 0 R e c e i v e r s
 2 5 0 0 R e c e i v e r s 5 0 0 0 R e c e i v e r s
 7 5 0 0 R e c e i v e r s G a u s s i a n f i t

(a) BIDIR-SAM

0 1 0 2 0 3 0 4 0 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

 2 5 R e c e i v e r s 2 5 0 R e c e i v e r s
 2 5 0 0 R e c e i v e r s 5 0 0 0 R e c e i v e r s
 7 5 0 0 R e c e i v e r s

<R
ela

tive
 Fr

eq
ue

nc
ies

>

M u l t i c a s t F o r w a r d i n g E n t r i e s [#]

5 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
0 , 0 0 0 0 0

0 , 0 0 0 0 2

0 , 0 0 0 0 4

0 , 0 0 0 0 6

0 , 0 0 0 0 8

0 , 0 0 0 1 0

(b) Scribe

Figure 4.8: Distribution of Multicast Forwarding Entries per Overlay Node for Pre�x Alphabet

Size k = 16 and Varying Number of Receivers, Cut at 50 Entries With a Detail View

for Scribe

the distribution of group states is extremely wide in Scribe. Almost all peers keep a multicast

forwarding table without entries, but some dedicated overlay nodes maintain single states for

up to 80 % of the receivers. In contrast, BIDIR-SAM nicely �ts the normal distribution and

consequently �lls its routing tables in a balanced mode.

Signaling Load

Figure 4.9 displays the average signaling load depending on the receivers ranked by their sub-

scription order. The number of issued joins is noticeably higher in BIDIR-SAM as in Scribe,

which is also indicated by the di�erent axis scales. This behavior re�ects directly the di�erent

underlying group management algorithms and corresponds to our analysis of the multicast for-

warding table size. In BIDIR-SAM, each new receiver �oods a pre�x subtree of di�erent height,

whereas Scribe submits single subscriptions on unicast paths towards the rendezvous point.

In BIDIR-SAM, the �rst overlay multicast listener needs to inform all peers about its sub-

scription. The signaling load then decays exponentially with the number of receivers. For larger

multicast groups with a receiver to overall overlay node ratio of more than 50 % BIDIR-SAM

approximates asymptotically the signaling load of Scribe. Any BIDIR-SAM peer, however, owns

at this time a richer routing table regarding the overall pre�x tree. While Scribe states construct

a single shared tree, which may break into incoherent parts, whenever intermediate states are

lost, BIDIR-SAM distributes its states to all nodes resulting in redundant source-speci�c trees

at each node.

It is worth noting, that the standard deviation in BIDIR-SAM is one order of magnitude

below the group size for the �rst 30 to 60 receivers and drops to three orders of magnitude

below for larger group sizes. This re�ects the case that receiver peers may be located in a pre�x

vicinity, which consequently results in a small subtree to �ood.

The number of issued joins can be tuned by adjusting the pre�x alphabet size (cf. �gure 4.9(c)

and 4.9(d)). Using a lower k accelerates BIDIR-SAM convergence to a comparable number of

subscription messages with respect to Scribe. Scribe shows an opposite e�ect and increases

slightly with the submitted joins as paths to the rendezvous point enlarge.

60

4.3 Performance Analysis

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0
<Is

su
ed

 Jo
ins

> [
Pa

cke
ts]

R e c e i v e r R a n k [#]

 B I D I R - S A M 1 0 0 N o d e s , 7 5 R e c e i v e r s
 B I D I R - S A M 1 0 0 0 N o d e s , 7 5 0 R e c e i v e r s
 B I D I R - S A M 1 0 0 0 0 N o d e s , 7 5 0 0 R e c e i v e r s

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

5 0

1 0 0

1 5 0

2 0 0

(a) BIDIR-SAM, k = 16

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0

1

2

3

4

5

6

<Is
su

ed
 Jo

ins
> [

Pa
cke

ts]

R e c e i v e r R a n k [#]

 S c r i b e 1 0 0 N o d e s , 7 5 R e c e i v e r s
 S c r i b e 1 0 0 0 N o d e s , 7 5 0 R e c e i v e r s
 S c r i b e 1 0 0 0 0 N o d e s , 7 5 0 0 R e c e i v e r s

(b) Scribe, k = 16

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

<Is
su

ed
 Jo

ins
> [

Pa
cke

ts]

R e c e i v e r R a n k [#]

 B I D I R - S A M 1 0 0 N o d e s , 7 5 R e c e i v e r s
 B I D I R - S A M 1 0 0 0 N o d e s , 7 5 0 R e c e i v e r s
 B I D I R - S A M 1 0 0 0 0 N o d e s , 7 5 0 0 R e c e i v e r s

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

5 0

1 0 0

1 5 0

2 0 0

(c) BIDIR-SAM, k = 4

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0
0

1

2

3

4

5

6

<Is
su

ed
 Jo

ins
> [

Pa
cke

ts]

R e c e i v e r R a n k [#]

 S c r i b e 1 0 0 N o d e s , 7 5 R e c e i v e r s
 S c r i b e 1 0 0 0 N o d e s , 7 5 0 R e c e i v e r s
 S c r i b e 1 0 0 0 0 N o d e s , 7 5 0 0 R e c e i v e r s

(d) Scribe, k = 4

Figure 4.9: E�ective Joins per Receiver

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

1

2

3

4

5

<In
jec

tio
n L

ev
el>

R e c e i v e r R a n k [#]

 1 0 0 N o d e s
 1 0 0 0 N o d e s

(a) k = 4

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
0

1

2

3

4

5

<In
jec

tio
n L

ev
el>

R e c e i v e r R a n k [#]

 1 0 0 N o d e s
 1 0 0 0 N o d e s

(b) k = 16

Figure 4.10: Mean Join Injection Level for BIDIR-SAM With Selected Error Bars for Pre�x

Alphabet Sizes k

61

4 Pre�x-based Overlay Multicast

2 5 1 0 0 1 0 0 0 1 0 0 0 0
7 , 0 k

7 , 5 k

8 , 0 k

8 , 5 k

9 , 0 k

<M
ea

n T
raf

fic
Lo

ad
 Pe

r P
ee

r>
[By

tes
]

G r o u p S i z e [# R e c e i v e r s]

 S c r i b e
 B I D I R - S A M

(a) Absolute UDP-Tra�c per Peer L

2 5 1 0 0 1 0 0 0 1 0 0 0 0
0 , 0
0 , 2
0 , 4
0 , 6
0 , 8
1 , 0
1 , 2
1 , 4
1 , 6
1 , 8
2 , 0

<R
ela

tive
 Tr

aff
ic L

oa
d P

er
Pe

er>

G r o u p S i z e [# R e c e i v e r s]

(b) LScribe/LPre�x Flooding

Figure 4.11: The Mean UDP Tra�c Volume per Peer in BIDIR-SAM and Scribe for Overlays

With 10.000 Nodes

Join Injection Level

The average injection level for joins in BIDIR-SAM is shown in �gure 4.10. Due to the nature

of pre�x trees, the distance to the root grows logarithmically with an increasing number of

receivers. The measurements can be controlled by the pre�x alphabet size and are independent

of the network size.

The latter observation can be explained by the self-similarity of pre�x trees. Reducing the

number of overall peers downsizes the maximal tree height. Nevertheless, the branching struc-

ture in the pre�x space persists. Thus, the paths traversed in subsequent joins will be shortened,

but injections still occurs at the same level. This highlights the uniform construction process of

the multicast distribution tree.

Tra�c Load

The average UDP tra�c per peer is visualized in �gure 4.11 for a �xed overlay with 10.000

nodes.5 In general, the tra�c load per peer achieves almost constant values independent of

the group size, nicely re�ecting the multicast nature of packet replication (cf. �gure 4.11(a)).

The tra�c load of BIDIR-SAM is negligibly higher than in Scribe, which results from increased

signaling load. It is worth noting, that the metric focuses on the mean tra�c load per peer.

Thus, a high packet replication load for single peers in Scribe, as we will observe next, will be

averaged over all group members. We omitted standard deviations bars for ease of readability.

However, in Scribe �uctuations are signi�cantly higher as in BIDIR-SAM, which is consistent

with our next observation.

Replication Load

The distributions of the replication load for di�erent network sizes and receiver populations are

displayed in �gure 4.12. The corresponding mean values and standard deviations are shown in

table 4.1. Both schemes exhibit a sharp peak for low replication values and decay exponentially.

The overall shape of the distribution depends mainly on the receiver population, which can

5As mentioned in section 3.3.2, a varying network size will basically change the KBR overhead.

62

4.3 Performance Analysis

0 1 0 2 0 3 0 4 0 5 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

2 , 52 , 52 52 52 55 05 05 07 57 57 5 R e c e i v e r t o O v e r l a y

N o d e R a t i o [%]

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

R e p l i c a t i o n L o a d [P a c k e t s]

< R
ela

tive
 Fr

eq
ue

nc
y>

(a) BIDIR-SAM

0 1 0 2 0 3 0 4 0 5 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

2 , 52 , 52 52 52 55 05 05 07 57 57 5

< R
ela

tive
 Fr

eq
ue

nc
y>

 R e c e i v e r t o O v e r l a y

N o d e R a t i o [%]

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

R e p l i c a t i o n L o a d [P a c k e t s]

(b) Scribe

Figure 4.12: Packet Replication Distributions for a Varying Receiver to Peer Ratio, k = 16

63

4 Pre�x-based Overlay Multicast

BIDIR-SAM, k = 16
N = 100 N = 1.000 N = 10.000

R < X > σX < X > σX < X > σX

25% 0.36 1.48 0.36 1.56 0.36 1.53
50% 0.60 1.98 0.61 2.14 0.61 2.17
75% 0.81 2.32 0.82 2.48 0.82 2.58

Scribe, k = 16
N = 100 N = 1.000 N = 10.000

R < X > σX < X > σX < X > σX

25% 0.27 1.96 0.26 4.99 0.26 14.11
50% 0.52 3.72 0.51 9.68 0.51 27.93
75% 0.76 5.48 0.76 14.72 0.76 41.72

Table 4.1: The Mean < X > and Standard Deviation σX for the results in �gure 4.12. R

represents the multicast listener subscription ratio and N the overlay size.

clearly be seen from comparing the average values for di�erent overlay sizes: BIDIR-SAM as

well as Scribe attain a constant average packet replication load for varying overlay dimensions

and a �xed receiver to peer ratio. However, the distributions di�er in detail.

The mean variation increases linearly for Scribe and negligibly for BIDIR-SAM with the

overlay network size. This result coincides with our observations for the broadcast scenario (cf.

section 3.3.2) and previous conclusions can be adopted.

A detailed view of the packet replication for a varying number of receivers in a �xed size

overlay is given in �gure 4.13. The asymptotical growth of the packet replication in Scribe

also remarkably depends on the group size. Additional multicast listeners, thus, increase the

maximal replication load. This indicates a tendency that additional receivers construct branches

meeting the maximal load replicator, which further implies that a single peer is responsible to

forward multicast data to almost all group members. In contrast to this, BIDIR-SAM balances

the load. The branching factor k shifts weights of higher replications, which results in a lower

maximal load (cf. �gure 4.14), but in a slightly increased load per peer and longer paths. The

reduced k smooths the tail of BIDIR-SAM (cf. �gure 4.14(c)), as branches are populated more

densely and replications occur as multiples of k − 1.
Figure 4.13(e) and 4.13(f) visualize the locations of the packet replications inside the multicast

distribution tree. The main forwarding load is performed at the source (tree level 0) in BIDIR-

SAM and by the rendezvous point (tree level 1) in Scribe. Surprisingly, Scribe lacks on visible

replications for tree level 4-6, but continues on level 7. The reason for this is that level 4-6 of

the tree represents longer one-way branches, which appears less likely in BIDIR-SAM.

64

4.3 Performance Analysis

0 1 0 2 0 3 0 4 0 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s < X > = 0 . 0 1 , σX = 0 . 1 7
 2 , 5 % R e c e i v e r s < X > = 0 . 0 5 , σX = 0 . 5 3
 2 5 % R e c e i v e r s < X > = 0 . 3 6 , σX = 1 . 5 3
 5 0 % R e c e i v e r s < X > = 0 . 6 1 , σX = 2 . 1 7
 7 5 % R e c e i v e r s < X > = 0 . 8 2 , σX = 2 . 5 8

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(a) BIDIR-SAM

0 1 0 2 0 3 0 4 0 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 R e c e i v e r s < X > = 0 . 0 0 , σX = 0 . 1 8
 2 , 5 % R e c e i v e r s < X > = 0 . 0 3 , σX = 1 . 4 9
 2 5 % R e c e i v e r s < X > = 0 . 2 6 , σX = 1 4 . 1 1
 5 0 % R e c e i v e r s < X > = 0 . 5 1 , σX = 2 7 . 9 3
 7 5 % R e c e i v e r s < X > = 0 . 7 6 , σX = 4 1 . 7 2

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

(b) Scribe

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

(c) Detail: Tail for BIDIR-SAM

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1
<R

ela
tive

 Fr
eq

ue
nc

y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

(d) Detail: Tail for Scribe

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

<R
ep

lica
tio

n L
oa

d>
 [P

ac
ke

ts]

T r e e L e v e l

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r s
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

(e) Locations of Replications within the BIDIR-

SAM Distribution Tree

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r s
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

<R
ep

lica
tio

n L
oa

d>
 [P

ac
ke

ts]

T r e e L e v e l

(f) Locations of Replications within the Scribe

Distribution Tree

Figure 4.13: Distribution of Packet Replication Comparing BIDIR-SAM with Scribe for a Vary-

ing Ratio of Receivers to Peers Using a Fixed Key Length of 128 and k = 16 in a

10.000 Node Overlay

65

4 Pre�x-based Overlay Multicast

0 1 0 2 0 3 0 4 0 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s < X > = 0 . 0 1 , σX = 0 . 1 4
 2 , 5 % R e c e i v e r s < X > = 0 . 0 7 , σX = 0 . 4 2
 2 5 % R e c e i v e r s < X > = 0 . 4 0 , σX = 1 . 1 3
 5 0 % R e c e i v e r s < X > = 0 . 6 4 , σX = 1 . 4 7
 7 5 % R e c e i v e r s < X > = 0 . 8 4 , σX = 1 . 7 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

(a) BIDIR-SAM

0 1 0 2 0 3 0 4 0 5 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s < X > = 0 . 0 0 , σX = 0 . 1 8
 2 , 5 R e c e i v e r s < X > = 0 . 0 4 , σX = 1 . 1 6
 2 5 % R e c e i v e r s < X > = 0 . 2 9 , σX = 7 . 5 0
 5 0 % R e c e i v e r s < X > = 0 . 5 4 , σX = 1 2 . 7 9
 7 5 % R e c e i v e r s < X > = 0 . 7 7 , σX = 1 7 . 4 9

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

(b) Scribe

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

(c) Detail: Tail for BIDIR-SAM

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 E - 6

1 E - 5

1 E - 4

1 E - 3

0 , 0 1

0 , 1

<R
ela

tive
 Fr

eq
ue

nc
y>

R e p l i c a t i o n L o a d [P a c k e t s]

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

(d) Detail: Tail for Scribe

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

<R
ep

lica
tio

n L
oa

d>
 [P

ac
ke

ts]

T r e e L e v e l

(e) Locations of Replications within the BIDIR-

SAM Distribution Tree

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 0 , 2 5 % R e c e i v e r s
 2 , 5 % R e c e i v e r s
 2 5 % R e c e i v e r s
 5 0 % R e c e i v e r s
 7 5 % R e c e i v e r s

<R
ep

lica
tio

n L
oa

d>
 [P

ac
ke

ts]

T r e e L e v e l

(f) Locations of Replications within the Scribe

Distribution Tree

Figure 4.14: Distribution of Packet Replication Comparing BIDIR-SAM with Scribe for a Vary-

ing Ratio of Receivers to Peers Using a Fixed Key Length of 128 and k = 4 in a

10.000 Node Overlay

66

4.3 Performance Analysis

12345

0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

2 5
2 5 0

5 0 0
7 5 0

G r
o u

p S
i z e

[#
R e

c e
i v e

r s]
< R

e l a
t i v e

 F r
e q

u e
n c

y >

H o p C o u n t [N o d e s]

(a) BIDIR-SAM N = 1.000

12345

0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

2 5
2 5 0
5 0 0
7 5 0

Gr
ou

p S
ize

[#
Re

ce
ive

rs]
< R

e l a
t i v e

 F r
e q

u e
n c

y >

H o p C o u n t [N o d e s]

(b) Scribe N = 1.000

Figure 4.15: Hop Count Distribution for an Overlay of Size N and Di�erent Numbers of Re-

ceivers, k = 16

Hop Count

The mean hop count distribution for an overlay with 1000 nodes and a varying number of

receivers is plotted in �gure 4.15.6 Both schemes show that the path lengths in the multicast

distribution trees are uncorrelated with the number of multicast listeners. This is reasonable as

the shortest forwarding paths are created in the network of all overlay peers. For this reason,

we continue the discussion focused only on the minimal receiver set in our scenario.

Figure 4.16 visualize the hop count distribution for di�erent overlay network sizes. BIDIR-

SAM as well as Scribe exhibit a logarithmically increasing path length, which results from the

underlying Pastry pre�x tree. Recalling our previous observation, the results nicely coincide

with the broadcast scenario studied in section 3.3.2 (cf. �gure 3.9). This includes in particular

the elongated path by at least one hop in Scribe due to use of a rendezvous point approach.

A smaller pre�x alphabet increases the height of the constructed multicast distribution tree

and creates longer paths (cf. �gure 4.16(a), 4.16(c) and 4.16(e)). In contrast to Scribe, the

average hop count changes more signi�cantly in BIDIR-SAM, but the di�erence to k = 16
remains below one hop. The standard deviation grows almost by a constant in BIDIR-SAM,

but linearly in Scribe. Both schemes show higher weights for longer paths. Similar behavior

could be observed for other values of k.

Forwarder Fairness

The mean fraction of multicast receivers acting as data forwarder is shown in �gure 4.17 for

di�erent overlay network sizes. Both schemes attain a fairly equal ratio of listeners distributing

data. This measurement scales almost independently of the overlay network size and grows

linearly with the receiver population inside the overlay.

6The qualitative behavior holds for di�erent overlay sizes, which are omitted.

67

4 Pre�x-based Overlay Multicast

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 2 . 6 8 , σX = 0 . 9 1
 S c r i b e < X > = 3 . 0 8 , σX = 0 . 7 4

(a) N = 100, k = 4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 1 . 9 1 , σX = 0 . 5 5
 S c r i b e < X > = 2 . 6 8 , σX = 0 . 5 2

(b) N = 100, k = 16

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 3 . 9 0 , σX = 1 . 0 9
 S c r i b e < X > = 4 . 2 8 , σX = 0 . 9 0

(c) N = 1.000, k = 4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 2 . 6 8 , σX = 0 . 6 3
 S c r i b e < X > = 3 . 5 3 , σX = 0 . 8 7

(d) N = 1.000, k = 16

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 5 . 0 5 , σX = 1 . 2 0
 S c r i b e < X > = 5 . 5 1 , σX = 1 . 0 8

(e) N = 10.000, k = 4

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<R
ela

tive
 Fr

eq
ue

nc
y>

H o p C o u n t [N o d e s]

 B I D I R - S A M < X > = 3 . 4 5 , σX = 0 . 6 9
 S c r i b e < X > = 4 . 5 2 , σX = 1 . 1 8

(f) N = 10.000, k = 16

Figure 4.16: Hop Count Distribution for an Overlay of Size N and a Varying Pre�x Alphabet

Size k for 25 Receivers

68

4.3 Performance Analysis

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<f h,k
,g,

N/f h,k
,N>

R e c e i v e r t o O v e r l a y N o d e R a t i o [%]

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

(a) BIDIR-SAM

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

<f h,k
,g,

N/f h,k
,N>

R e c e i v e r t o O v e r l a y N o d e R a t i o [%]

 1 0 0 N o d e s
 1 0 0 0 N o d e s
 1 0 0 0 0 N o d e s

(b) Scribe

Figure 4.17: Fraction of Multicast Receivers Acting as Data Forwarder for Di�erent Overlay

Sizes, k = 16

Multicast E�ciency

The normalized multicast e�ciency is plotted in �gure 4.18 for di�erent overlay sizes. For com-

parison, we also show the normalized multicast e�ciency with respect to the analysis by Chuang

and Sirbu [26]. Using a standard pre�x alphabet with 16 digits, the absolute e�ciency values

of BIDIR-SAM and Scribe are higher than observed by Chuang and Sirbu for native multicast.

However, this metric re�ects the scaling behaviour of multicast protocols with growing group

sizes. The slope, which represents the scaling factor, is calculated based on a linear �t. It

can clearly be seen, that the basic BIDIR-SAM increases with equal rate as native multicast.

In contrast, Scribe exhibits a higher scaling factor. This indicates that Scribe paths are con-

structed less e�ciently. The observation coincides with our previous results, which show a high,

unicast-like replication load for Scribe around a single node.

The optimized BIDIR-SAM attains a constant slope of 1 as all traversed edges correspond

to receiver links. Surprisingly, this appears to be less e�cient than current native multicast

protocols, even though the optimized BIDIR-SAM traverses the minimal number of edges.

This counterintuitive observation results from the Internet-guided picture for the metric, that

a signi�cant number of inner vertices represents only forwarders. This does not hold for the

optimized BIDIR-SAM, which nevertheless attains the highest e�ciency.

Reducing the pre�x alphabet size, increases the absolute normalized multicast e�ciency, as

multicast paths will be longer and receivers are more likely to co-located on a path. Thus, the

multicast protocols bene�t from higher link re-use, which reduces the scaling factor slightly.

69

4 Pre�x-based Overlay Multicast

1 1 0 1 0 0 1 0 0 0
1

1 0

1 0 0

1 0 0 0

No
rm

aliz
ed

 M
ult

ica
st

Eff
icie

nc
y

G r o u p S i z e [# R e c e i v e r s]

 B I D I R - S A M , s l o p e 0 . 8 0
 O p t i m i z e d B I D I R - S A M , s l o p e 1 . 0 0
 S c r i b e , s l o p e 0 . 9 1
 C h u a n g - S i r b u - L a w , s l o p e 0 . 8

(a) N = 1.000, k = 16

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

No
rm

aliz
ed

 M
ult

ica
st

Eff
icie

nc
y

G r o u p S i z e [# R e c e i v e r s]

 B I D I R - S A M , s l o p e 0 . 8 2
 O p t i m i z e d B I D I R - S A M , s l o p e 1 . 0 0
 S c r i b e , s l o p e 0 . 9 3
 C h u a n g - S i r b u - L a w , s l o p e 0 . 8

(b) N = 10.000, k = 16

1 1 0 1 0 0 1 0 0 0
1

1 0

1 0 0

1 0 0 0

No
rm

aliz
ed

 M
ult

ica
st

Eff
icie

nc
y

G r o u p S i z e [# R e c e i v e r s]

 B I D I R - S A M , s l o p e 0 . 7 4
 O p t i m i z e d B I D I R - S A M , s l o p e 1 . 0 0
 S c r i b e , s l o p e 0 . 8 5
 C h u a n g - S i r b u - L a w , s l o p e 0 . 8

(c) N = 1.000, k = 4

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

No
rm

aliz
ed

 M
ult

ica
st

Eff
icie

nc
y

G r o u p S i z e [# R e c e i v e r s]

 B I D I R - S A M , s l o p e 0 . 7 8
 O p t i m i z e d B I D I R - S A M , s l o p e 1 . 0 0
 S c r i b e , s l o p e 0 . 8 8
 C h u a n g - S i r b u - L a w , s l o p e 0 . 8

(d) N = 10.000, k = 4

Figure 4.18: Normalized Multicast E�ciency for Di�erent Overlay Sizes N and Pre�x Alphabets

k

70

4.4 Related Work

4.4 Related Work

Derived from structured peer�to�peer routing, a collection of group communication services has

been developed, with the aim of seamless deployability as application layer or overlay multicast

[105, 48, 53]. Among the most popular approaches are multicast on CAN [78], Bayeux [108]

as derived from Tapestry and Scribe [22] or SplitStream [21], which inherit their distributed

indexing from Pastry.

Approaches to multicast distribution in the overlay essentially branch in two algorithmic

directions. The �rst uses DHTs to generate a structured sub-overlay network of group members,

which thereafter is �ooded with multicast packets. This mechanism underlies multicast on

CAN. CAN requires a bootstrapping mechanism to create this mini overlay, and instantiates

a full new structured network afterwards. From the BIDIR-SAM perspective, the equivalent

procedure would employ pre�x �ooding subsequent to setting up a sub-overlay for the speci�c

group. Note that such schemes require a groupwise sub-overlay instantiation.

The second class of algorithms erects a shared or source speci�c distribution tree within the

original full overlay, which is �ooded thereafter. In a shared tree approach, these schemes are

used in Scribe and SplitStream, where one or several rendezvous nodes are chosen from group

key ownership. To the best of our knowledge, the only scheme that follows a source speci�c

distribution model on top of a structured overlay is Bayeux. The creation of a group proceeds

from hashing a group identi�er, which thereafter is used as the name of a trivial �le placed

at the source node. Using Tapestry location services, the source root of a session announces

that dummy document into the entire network. Thereby clients will learn about the group

and source ID tuple to perform source-speci�c subscriptions. Any subscription is routed to the

source, which acts as a centralized group controller including a complete receiver tracking. In

proceeding along this line, Bayeux admits a state information growth of linear scaling in the

number of receivers. Hence it su�ers from severe scalability restrictions.

DHT�based multicast performance has been thoroughly studied in [23] with the comparative

focus on tree�based and �ooding approaches built onto CAN and Pastry (cf. also section 3.4).

The separate construction of mini-overlays per group as needed for a selective �ooding showed

to incur signi�cant overhead. In addition, �ooding was found to be outperformed by forwarding

along trees, where a shared group tree combined with proximity-aware routing as in Scribe could

minimize the overlay delay penalty down to a factor of two.

Many overlay multicast concepts concurrently exist for unstructured peer-to-peer approaches

[48]. Operating at a lower algorithmic complexity, but signi�cantly higher coordinative signalling

e�orts, performance characteristics for unstructured schemes di�er. While DHT-based schemes

are close to optimal with respect to message overhead and forwarding e�ciency, they tend to

create unbalanced distribution trees as an outcome of structured routing rules. Multicast tree

balance and performance comparing structured and unstructured schemes have been explored

in [14]. Focusing on Scribe and SplitStream, and in agreement with our results, the authors

identi�ed a highly unbalanced forwarding load at inner tree nodes along with a large �uctuation

of delays sustained at receivers. The latter where found to accumulate in SplitStream to mainly

intolerable jitter values. In addition, conventional structured tree-based schemes are highly

vulnerable to failures along the paths. A single failure along a spanning tree can result in

loosing a message for a whole branch. An important value of BIDIR-SAM lies in its inherent

tree redundancy, which e�ortless allows for a scalable redundant data dissemination without

71

4 Pre�x-based Overlay Multicast

noticeable performance penalties.

For the sake of completeness, we mention that probabilistic, gossip-based protocols [13, 61, 56,

101] form an alternate approach to the large-scale content distribution problem. By increasing

scalability through reducing coordinative information, those algorithms attempt to optimize the

likelyhood of a uniformly correct packet delivery.

Only recently, a more fundamental debate on multicast e�ciency has come life. Though

obvious, network e�ciency gained from multicast data distribution has not been quanti�ed for

a long time, leaving providers with vague expectations for the outcome of multicast service

provisioning. Starting in 1998, multicast distribution trees have been thoroughly studied with

regards to network e�ciency. Grounded on empirical observations on the IP layer, Chuang

and Sirbu [26] proposed a scaling power�law for the total number LN (g) of links in a multicast

shortest path tree with g receivers of the form

LN (g) ≈ < LU > gα,

where < LU > represents the average number of unicast hops taken by a message between

uniformly chosen nodes in the corresponding network of N nodes. The authors consistently

identi�ed the scale factor to attain the independent constant α = 0.8. The validity of such

universal, heavy�tailed distribution suggests that multicast shortest path trees are of self�similar

nature with many nodes of small, but few of higher degrees. Consequently, trees would rather

be shaped tall than wide. Providers thus could count on a relative gain in network resource

consumption, which uniformly scales in group size as g0.2.

Subsequent empirical and analytical work in [71, 98, 24, 4, 51] has debated the applicability of

the Chuang and Sirbu scaling law. Its consequences for multicast mobility has been analyzed in

[87, 103]. Van Mieghem et al. [98] proved that the proposed power law cannot hold in general,

but is indeed a valid approximation for moderate receiver numbers and the current Internet size

N = 105 core nodes.

Multicast cost e�ciency has also been studied on the overlay [35]. Fahmy and Kwon examine

overlay tree structures experimentally and in theory, the latter using complete k-ary trees with

receivers placed at leaf nodes and inner vertices. In general, no clear indication of a power

law could be identi�ed in the paper. However, the authors conclude that a power exponent of

α = 0.9 becomes visible for a small number of multicast group members g in the overlay.

4.5 Discussion

In this chapter we have presented and analyzed BIDIR-SAM, a novel overlay multicast approach,

which enables any peer to distribute multicast data directly into a multicast group. Using a

logical pre�x overlay, BIDIR-SAM peers autonomously construct a bi-directional, shared distri-

bution trees, which disseminates data according to source-speci�c shortest paths. There is no

need for dedicated, infrastructure entities such as rendezvous point among the overlay nodes.

The protocol costs in signaling and fowarding are strictly predictable and scale logarithmically

with the network and group size, as has been shown in theoretical analysis and in simulations.

Thereby, and to the best of our knowledge, BIDIR-SAM is the only structured multicast scheme,

which distributes data on source-speci�c shortest path trees at logarithmic costs, and as well

the only solution, which utilizes shortest path trees within a shared tree model.

72

4.5 Discussion

BIDIR-SAM also uniquely de�nes a DHT-based multicast approach, which builds bi-directional

distribution trees without the assistance of any bootstrap node or rendezvous point. The perfor-

mance properties are evaluated based on simulations and a theoretical analysis, which quanti�es

measurements almost in exact agreement with the empirical calculations.

We compared our approach with Scribe, an implementation for a rendezvous point-based

overlay multicast scheme. BIDIR-SAM admits superior performance in overal data distribution

and scaling behaviour, when scaling towards very large networks and multicast groups. Scribe,

which erects a single shared tree, outperforms BIDIR-SAM on average with respect to the tree

construction costs for small size groups, but obligates dedicated overlay nodes with unbound,

tremendous storage and forwarding load. As a result, Scribe performance values �uctuate on a

large scale, leading in particular to high jitter values at the receiver nodes.

Large-Scale vs. Small Groups

Our analysis reveals that BIDIR-SAM is best suited for large-scale multicast groups. BIDIR-

SAM packet distribution metrics and overall resource requirements scale evenly as logarithmic

functions of the group size, while most performance values of Scribe �uctuate on a scale linearly

growing with group participants. In contrast to Scribe, BIDIR-SAM has to �ood pre�x listener

subscriptions to pre�x (sub-)trees, whose size depend on the receiver population. While the

�rst join message is distributed to all overlay nodes, the costs decay exponentially with further

multicast listeners arriving, such that groups exceeding 500 receivers in large overlays closely

approach the very low costs of Scribe. Thus, for application scenarios with a stable base number

of receivers, BIDIR-SAM exhibits appropriate costs, even while most of the multicast listeners

may change.

Multicast state updates directly in�uence multicast forwarding table sizes. In general, the

average number of entries per peer is higher in BIDIR-SAM than in Scribe. Nevertheless,

BIDIR SAM table sizes exhibit a strict logarithmic bound, while storage in Scribe may grow

linearly. Individual Scribe peers frequently store almost all multicast forwarding states. This

linear growth fails to meet the scaling characteristics of structured overlay networks. For large

multicast groups, Scribe peers will be overloaded. In contrast, BIDIR-SAM distributes states

fairly among all peers in small and in large groups.

As suggested by Castro et al., the state distribution for Scribe can be improved by adding

a balance mechanism of assisting replicators. This workaround implies a higher signaling load

and may cause routing loops [22]. The proposed scheme re-arranges the forwarding tables at the

reception of state updates, but may destabilize the forwarding tables. In contrast, BIDIR-SAM

instantaneously creates balanced routing tables of appropriately scaling sizes.

Additionally, BIDIR-SAM outperforms Scribe with respect to the forwarding costs. A BIDIR-

SAM multicast sender can control the maximal load it imposes onto the distribution infrastruc-

ture, which is a simple but e�ective QoS instrument. In particular, a sender-initiated forward-

ing load declines exponentially in BIDIR-SAM, thus being at hand as an a priori load estimate,

which may be used for �ow control. In contrast, the distribution of the replication load in Scribe

is heavy-tailed. The rendezvous point in Scribe distributes the multicast data to a signi�cant

number of receivers. This load even increases in multiple source scenarios: Each source will

send its data to the rendezvous point. In contrast, the highest load in BIDIR-SAM is located

at the source, while replications steadily decrease as the pre�x tree is descended. Based on

the structural protocol properties it follows that in case of multiple sources, the source-speci�c

73

4 Pre�x-based Overlay Multicast

distribution model of BIDIR-SAM will balance the load automatically.

BIDIR-SAM always operates on a single virtual distribution tree, which is collectively known

at peers. This common forwarding instruction leads to a coherent overlay routing performance

among all peers, and is of particular importance in synchronized multisource scenarios. The

latter become vital in mobility or load sharing scenarios. As already discussed in section 4.2.2,

this prevents BIDIR-SAM from admitting intolerable jitter values under source variations as

have been observed for SplitStream.

Redundancy and Reliability

The common major weakness of tree-based structured multicast approaches debated in literature

and practice lies in a limited reliability and an increased vulnerability with respect to node or

link failures. It is one of the major strength of BIDIR-SAM to overcome this de�cit. On the

price of an enhanced initial signaling load, a wider distribution of multicast state information

is achieved among peers. Actually, each peer carries a self-consistent view of the distribution

tree using a state table of logarithmic size. In particular, each peer is enabled to initiate or

perpetuate the distribution of any packet it receives. This inherent redundancy allows for a

drop out of nodes, without a�ecting multicast forwarding. In section 4.2.2 we have already

discussed that a combination of network coding and a relay-oriented forwarding strategy can

add r-redundancy e�ortless and without additional signaling to BIDIR-SAM.

On the contrary, only a few selected Scribe peers hold forwarding entries. If they disappear

or su�er from disturbances, the multicast distribution tree collapses.

The reliability of BIDIR-SAM will be enforced by storing only pre�xes instead of full destina-

tion keys. Each pre�x covers a number of interchangeable overlay nodes. The reliability, thus,

will be supplementary enhanced by the underlying KBR. Relying on individual distribution

paths, Scribe does not bene�t from this �exibility and will cut multicast branches, whenever an

intermediate forwarder is not accessible. The latter behavior will be particularly disruptive at

the RP.

Overall Performance

The performance of BIDIR-SAM is uniformly and strictly predictable over all peers, whereas

Scribe produces an unfair, irregularly �uctuating load at forwarders. BIDIR-SAM constructs

shorter paths and creates lower replication loads, which remain quite stable with growing group

sizes. Operating on forward-oriented, pre�x-de�ned paths, BIDIR-SAM not only complies with

asymmetric links and hop alterations, but takes higher-than-average advantage of proximity

selections at the KBR layer.

BIDIR-SAM can nicely be tuned by the pre�x alphabet parameter. A smaller pre�x alphabet

directly smooths the branching, which in turn reduces signaling and replication load per peer.

All deviations from mean values thereby remain small. This overall balancing e�ect faces the

path lengths as its only counter-measure. They increase logarithmically with the alphabet size.

In contrast to this, the branching parameter has only marginal e�ects on the performance of

Scribe.

74

5 Design of an Overlay Group Communication

Architecture

5.1 Concept of a Common API for Structured Overlay Routing

A structured overlay network consists of three functional groups: a routing scheme, a set of

services and the applications. The routing, based on a decentralized key approach, is responsible

for locating peers associated with speci�c key ranges. Such routing algorithm is independent

of the applications built upon it. Services like group communication, failover redundancy, etc.

supplement the structured overlay and can be developed independently of both, the underlying

overlay routing and the application. A well designed protocol architecture should separately

account for these components and o�er pluggable modular building blocks.

Modeling routing, services and applications in a self consistent way leads to a layered archi-

tecture, which will attain �exibly interchangeable modules from common interface de�nitions

between all components. Flexibility emerges from two perspectives. Firstly, the development

process may be simpli�ed as modules can be reused. This is important in particular in the

context of new emerging technologies like structured overlay networks, which then can be an-

alyzed more consistently and timely in di�erent systems like simulators and real-world setups.

Secondly, deployed modules can be combined from tailored units. In the scenario of structured

P2P networks, an application can be composed of overlay implementations best suited for cur-

rent requirements on performance and service needs. This may not only reduce complexity, but

also diminish maintenance overhead from unwanted services.

5.1.1 The Dabek Model

The �rst ideas towards a layered architecture with a common API for structured overlays has

been presented in [27]. The concept is known as the Dabek model and has been implemented

in numerous simulators [68, 62, 15, 10] and DHT stacks [32]. The basis of the Dabek model is

a uni�ed overlay routing interface.

Structured overlay networks have been originally inspired by distributed indexing. Recently,

they inspired even new routing schemes directly on top of the link layer [18]. The decentralized

routing mechanism of P2P protocols serves as a virtualized network layer. Dabek et al. observed

that many peer-to-peer services and applications are built upon such a key-based routing (KBR)

module, which can locate peers for multiple purposes. Based there on, the authors suggest

a compound P2P layer consisting of three tiers: Tier 0 represents the fundament of overlay

communication, the KBR layer. Tier 1 implements higher level abstractions, complemented by

tier 2 for end user applications and further, higher level services.

Dabek's model focuses on tier 0. The meaning of tier 1 and 2 has not been fully elaborated.

Both tiers may accommodate services with direct access to the KBR layer. Reusable abstractions

75

5 Design of an Overlay Group Communication Architecture

Figure 5.1: A Compound P2P Layer According to the Dabek Model [27] With Typical Ap-

plication Classes. Interactions Between the Layer Components are Highlighted by

Arrows.

for speci�c purposes are dedicated to reside on tier 1. The DHT abstraction1 is an example for

this This component provides a store-and-retrieval key management service on the overlay for

applications like �le sharing. On top of the DHT abstraction, further services may be available,

such as an additional caching to be used by 'end-user' applications or speci�c store and retrieval

functions. This concept of stacked services may actually result in additional tiers, not foreseen

by the model. To avoid such complicacies, we assume that tiers 0 to 2 of the Dabek model

re�ect a routing, a service and an application layer (cf. �gure 5.1).

The Common Key-based Routing API

The key-based routing layer provides the option to forward data along overlay hops. With

respect to the concepts of layered architectures, an implementation may delegate messages to

the KBR component that performs the routing. Hence, all application data will be encapsulated

in overlay messages and delivered by the KBR. However, this may be ine�cient, because it can

cause double encapsulation, at the service and the KBR layer. Additionally, a tier 1 service may

follow a di�erent routing strategy than the overlay paths. Thus, a common API should remain

open with respect to adaptable message forwarding, as well as KBR state access.

The KBR API by Dabek et al. consists of two functional groups. The �rst part provides

function calls for sending and receiving data messages above tier 0, and also for controlling the

overlay routing path for messages initiated by the service or application. These are subsumed

as message routing. The second part allows access to the KBR routing states at peers.

The message routing calls o�er all required primitives to perform an overlay routing con�g-

urable by higher layers. They are summarized in table 5.1 with respect to the implementation

at the speci�c layers. In the following, we describe the use of these di�erent functions. Starting

at a source peer that calls route, data will be forwarded towards the (destination) key by the

KBR. This request can be supplemented by a prede�ned �rst hop, the hint. At all intermediate

peers between source and destination, the KBR implementation invokes forward at the tier

above. This upcall informs the application about its intention to forward the message for key K

to the nextHopNode. All passed parameters can be modi�ed. Thus, tier 1 and 2 applications can

1Although, DHTs are equipped with a KBR, the aim of distributed hash tables is the management of key-value-

pairs. This is a conceptually di�erent task compared to the KBR.

76

5.1 Concept of a Common API for Structured Overlay Routing

Tier Message Routing

1-2 forward(key↔K, msg↔M, nodehandle↔nextHopNode)

deliver(key→K, msg→M)

0 route(key→K, msg→M, nodehandle→hint)

Table 5.1: The KBR Message Routing API Calls Implemented at the Corresponding Layers [27]

Tier State Access

1-2 update(nodehandle→n, bool→joined)

0 nodehandle [] local_lookup(key→K, int→num, boolean→safe)

nodehandle [] neighborSet(int→num)

nodehandle [] replicaSet(key→k, int→max_rank)

boolean range(nodehandle→N, rank→r, key↔lkey,key←rkey)

Table 5.2: The KBR State Access API Calls Implemented at the Corresponding Layers [27]

e�ectively override the default KBR (overlay) routing behavior by changing the nextHopNode.

Finally, the message will be provided to the application at the peer responsible for K via deliver.

For a detailed description of the state access functions, we refer to [27]. An overview is given

in table 5.2. These calls are limited to local operations and do not involve communication with

other nodes. Applications can invoke these function from higher tiers to inquire on the local

peer routing states. Nevertheless, local lookups will fail, whenever the requested information is

not locally available. To facilitate a global peer access, the message routing functions can be

used.

The routing as well as the state access functions require a common key parameter that

corresponds to the overlay address. Consequently, all applications using one of the primitives

must be aware of the hash function in use.

Limitations of the KBR-API

The generic approach of the KBR-API does not provide information about the actual overlay

routing protocol or implementation-speci�c parameters, like the key length in KBR or the

dimension in CAN. Such meta information are of interest for services, which implement cross

layering or operate adaptive to the underlying KBR. An example are routing services that are

derived from the local state information, but want to construct their own forwarding tables.

Using the common API, these services can retrieve generic destination values, but are not

enabled to reconstruct the underlying routing structure.

To make the protocol parameters visible to upper tiers, the API needs extensions. One

possible concept would include dynamic maps to present the KBR speci�c con�gurations in

the form of key value pairs. The corresponding schemes can be implemented by information

bases similar to Management Information Bases (MIBs). The implementation of this approach

requires only a getter call. The actual parameter set is then de�ned by the protocol instance.

In using such a rich, compound P2P layer concept, existing key-based routing implementations

can be enhanced by new services without changing the KBR component. For this purpose, a

new service is only required to implement the common KBR calls. However, more complex

services such as overlay multicast, need to provide an own common API towards applications.

77

5 Design of an Overlay Group Communication Architecture

Figure 5.2: Generic Stack Architecture for Cooperated Underlay & Overlay Multicast

5.2 A Middleware for Structured P2P Group Communication

P2P group communication is strongly driven by the lack of infrastructure support for multicast.

Although overlay multicast (OLM) is mainly used as a supplement for expanding native multi-

cast regions, its mediator role between application and network layer may shape and enhance

group communication. This is one reason, why an OLM scheme should be implemented in a

�exible, common group communication framework, which simultaneously accounts for speci�cs

of the overlay and underlay. The core architecture for an enhanced group communication stack

is shown in �gure 5.2.

The main task of an OLM component is the distribution of data according to the host group

model. Destined for a group address, messages are replicated along an existing (virtual) routing

infrastructure similar as in native networks. On the unicast side, routing in structured overlays

can be provided by the KBR layer and the access may be decoupled from a speci�c implemen-

tation using the common primitives. Thus, structured overlay group communication requires at

least the KBR layer.

The KBR layer connects peers to a unicast network. Multicast domains will be established,

when overlay nodes form a group. Group creation and maintenance is operated within the

OLM middleware. A special case is broadcast, which inherently �oods all nodes of the network.

This may happen in contrast to the establishment of selected routing paths. Hence, multicast

and broadcast follow di�erent distribution schemes, and require a di�erent API towards the

application. A modular OLM stack should account for these conceptual di�erent challenges and

solutions.

Besides �exibility, an OLM design should also be guided by a compatibility principle with

respect to native network services. On the one hand, the API calls, e.g., joining and leaving

groups, should be compliant to well-known functions, such that application developers are not

distracted. On the other hand, the OLM middleware should provide an interface, which allows

transmission of data to both, overlay and native multicast networks.

Overlay group communication di�ers from native IP networks with respect to addressing.

An IP stack is fed with the correct network address type to perform routing, whereas the key-

based routing layer maps an arbitrary identi�er to the deployed key space, which commonly

78

5.2 A Middleware for Structured P2P Group Communication

is not invertible and does not allow to recover original IDs. Applications need to regain those

identi�ers explicitly, and it may be an advantage for the overlay routing to be aware of the

application addresses, as well. Based on application addresses, the overlay scheme may for

instance aggregate or scope groups. Thus, the design of an OLM middleware should preserve

common group functions, but also include support for speci�c aspects of the layers involved,

and remain open for additional functionalities arising from structured overlay networks.

5.2.1 Current State of the Art

The Dabek model proposes the multicast abstraction CAST [27]. The idea is to provide overlay

services in a generic multicast module. CAST consists of a set of interfaces for group man-

agement and data distribution (join(groupId), leave(groupId), multicast/anycast(msg,

groupId)), as well as a basic multicast routing on top of the KBR layer. Routing within CAST

is built upon a dedicated tree management and forwarding scheme, which is similar to Scribe.

Calling the join function initiates a subscription message routed towards the hash of the group

id, employing the KBR route. At all intermediate peers, the upcall forward is invoked to

establish corresponding multicast states in CAST. On top of CAST, the authors have foreseen

further multicast implementations, e.g., Scribe or Bayeux.

This approach of a universal routing protocol as part of the middleware layer may con�ict with

the forwarding strategy pursued by services above CAST. A simple example can be identi�ed in

the di�erence between Scribe [22] and Bayeux [109]. While Scribe creates a rendezvous point-

based shared tree according to reverse path forwarding, Bayeux sets up source-speci�c states

along the path from the source to the new receiver. Thus for Bayeux, CAST would establish

multicast states in the opposite direction. Indeed, the idea of providing the P2P layer with

a generic multicast routing logic is valuable for applications agnostic to routing services, but

fails in general for OLM modules. Group speci�c routing forms the core component of overlay

multicast, which may change by approach and domain-speci�c demand. In this sense, a service

abstraction should only provide an interface de�nition, but not a routing logic.

Another application layer multicast (ALM) middleware architecture including a wrapper API

is currently presented in [60]. The authors assume that an ALM protocol consists of the fol-

lowing parts: group management, topology management and tra�c management, which can be

adopted by di�erent ALM protocols. For the latter, they propose an API for interoperability

and transparency. The API calls support the selection of di�erent transport protocols, as well

as a native networks and an overlay transmission mode.

The motivation of the suggested API is to provide a unique interface for supporting structured

and unstructured ALM protocols. As mentioned by the authors, the requirements slightly di�er

which is re�ected in the API design. Unstructured group management introduces functions

unknown in the context of structured overlay multicast, an external group management for

example. Many unstructured multicast schemes rely on central management and provide a

global view on the group structure. In general, the simultaneous support of centralized and

decentralized approaches poses a severe challenge to a common middleware. Actually, such a

cooperative deployment scenario is less likely than KBR protocols jointly operating with network

layer multicast, as both are fully distributed and explicitly neglect a server infrastructure.

The authors in [66] present a middleware for unstructured application layer multicast only.

They decompose the ALM component in several functional units, e.g., a metric estimator or a

logic net to maintain and optimize the overlay network. The proposed API does not account for a

79

5 Design of an Overlay Group Communication Architecture

transparent overlay and underlay group communication and consists only of simple receive/send

calls.

5.2.2 Current Challenges

Current concepts for the implementation of structured application layer multicast [27, 66, 60]

deal with the modularization of the OLM/ALM component and a corresponding API de�nition.

The APIs presented either focus on a common tree construction interface or a direct adoption of

native group management calls. However, the concepts do not account for two further important

aspects:

(a) Which type of addresses may join the application?

(b) How does the OLM API provide dedicated broadcast?

Commonly, a structured overlay network does not restrict the address space to any speci�c

type. Each address will be handled as a string and hashed to the same identi�er space with-

out further syntactical or semantical processing. Nevertheless, the overlay may require special

addresses for group communication to prede�ne a subset of group members like a broadcast

address. Applications operate in di�erent contexts and denote communication parties with re-

spect to a domain-speci�c namespace. Special addresses should be available in all namespaces

to allow for its continuous use.

Dedicated broadcast can be o�ered by a structured OLM API, after all applications have

joined a speci�c �all-hosts� multicast group. This obviously does not meet native broadcast,

which works without active receiver subscriptions. The problem can easily be �xed by distin-

guishing broadcast and multicast data. Supplementing the API with an additional broadcast

interface may be one simple solution. However, broadcast and multicast operate on the same

overlay which may results in key collisions while hashing identical identi�ers, since there is no

reserved address space. Consequently, the OLM middleware should foresee a speci�c, but well-

known broadcast address, which can also be used to identify broadcast and multicast data on

the same channel.

There are to natural options to guarantee that broadcast addresses used by di�erent appli-

cations are always mapped on the same overlay key. The API may de�ne a broadcast address

which belongs to a speci�c context, but is obligatory for all applications. Application program-

mers then have to use this speci�c address and need to account for context switches, if regular

group communication is based on a di�erent namespace.

Alternatively, broadcast addresses should be embedded in every namespace. These multiple,

dedicated addresses can then be mapped by the middleware to a common identi�er, which does

not con�ict with multicast addresses. For this reason, an OLM should be aware of namespaces,

and each namespace should include a unique broadcast address. This can be implemented, e.g.,

by using the natural 255.255.255.255 for IPv4 or the link-local all-nodes address for the IPv6

namespace. Application layer addresses like SIP URLs can reserve the asterisk for broadcast

identi�cation.

Based on the distinction of broadcast and multicast data, a group communication frame-

work can identify data and follow the distribution algorithms implemented. OLM approaches,

which do not support a dedicated broadcast scheme, may assure an all-node reachability by an

automatic pre-subscription via multicast.

80

5.2 A Middleware for Structured P2P Group Communication

Identifying addresses may enhance overlay group communication in contrast to native multi-

cast. A typical example may be news channels, e.g., sam@irtf.org and mobopts@irtf.org which

fall into a combined group *@irtf.org. Based on a corresponding aggregation, a user subscribes

only once, instead of joining each channel of an organisation. Such group aggregation can be of-

fered, if an arbitrary namespace includes a broadcast address and the OLM component is aware

of the namespace de�nition to distinguish addresses semantically. In the described example,

the OLM middleware would identify the user and host parts of the compound namespace and

initiate a partial broadcast to all members of irtf.org.2

5.2.3 A Common Network Stack for Group Communication

The design goals of an application layer multicast service for structured overlay networks are

twofold. On the one hand, the architecture for the OLM component itself needs to be de�ned

along with its placement in the global system. On the other hand, a generic API for each of

the interchangeable modules must be identi�ed.

There is a common sense in the literature to modularize P2P components, even though the

perspectives di�er. The Dabek model introduces a common 3 tier peer-to-peer stack with a

generic routing layer for structured overlays, while contributions in the �eld of ALM protocols

focus more on decomposing the ALM service. In the following we describe a generic architecture

and its main building blocks. These components can also consist of sub-components, which

depend on implementation details.

Architectural Overview

Overlay multicast supplements nodes without a global multicast connectivity with a wide-area

group communication service. Thus it is important to provide a transparent (virtual) network

stack to application developers beyond the P2P context. This may include enhanced group

communication services like group aggregation in namespaces.

In the following, we describe the architectural components required for such an enhanced

group communication and the corresponding API. The overall architecture is displayed in �gure

5.3. The group communication stack consists of a middleware, underlay and overlay multicast

modules. The middleware manages data exchange between the application and group services.

Depending on availability and application requests, it creates a transparent overlay or a native

network communication channel. In addition to common multicast interfaces for applications,

the middleware provides a service API re�ecting group communication states.

Overlay data will be handled by the broadcast or multicast implementation, depending on

the destination address in use. Since broadcast will be delivered without explicit subscription,

it is only the multicast implementation that internally provides join and leave calls.

The OLM protocols operate on overlay unicast communication. For this reason they are con-

nected with the key-based routing layer via the common API (see section 5.1.1). The KBR can

be used twofold: On the one hand, it may operate as a transmission layer delivering data to

overlay peers. On the other hand, it provides group protocol implementations with unicast rout-

2This group aggregation does not follow the common multicast paradigm, but can for instance be naturally

implemented in CAN which we only sketch: Each part of the namespace is separately hashed and corresponds

to a CAN dimension. Equal addresses result in equal CAN coordinates. Flooding the selected namespace,

then corresponds to data dissemination in the selected dimension.

81

5 Design of an Overlay Group Communication Architecture

Figure 5.3: An Application Layer Multicast Middleware Embedded in a P2P Stack

ing states. In the latter case, overlay multicast and broadcast data need not use the KBR layer

for transmission, but may sent data directly to peers. Therefore the multicast and broadcast

components need to provide an interface to the IP layer, as well.

An API Proposal

The overlay routing is based on hashed keys. As the applications are unaware of any overlay

speci�cs, the mapping of the destination address to the key space should be performed on the

ALM layer as already suggested by Dabek et al. Nevertheless, it is important to preserve the

original address, because an application may receive streams directed to di�erent multicast

addresses from di�erent receivers via the same communication channel. The IP address noted

in the IP header cannot be used, as the root of a key may change due to volatile peers.

As an overlay is used in a speci�c context, the identi�ers selected by the applications are

likely to belong to the same namespace. Thus, we suggest to pre-initialize the communication

channel between application and group stack with the corresponding context to simplify the

API calls.

The destination group address con�gured by the application is a common application layer

or network address and is denoted by address. In contrast, overlay IDs are identi�ed as key.

The application can choose, if it sends the data to the underlay or overlay. We denote the cor-

responding data type mode, which also allows to leave the decision at the group communication

stack, if the mode is unspeci�ed. In the following, we will describe the API calls used between

the group communication stack and the application.

At �rst, we explain calls to function for sending and receiving multicast data, thus, re�ecting

typical source and receiver instances.

init(namespace→n) This call is implemented by the multicast middleware to set the com-

munication channel between application and stack up. It preinitializes the namespace, which

then can be used for all further calls.

82

5.2 A Middleware for Structured P2P Group Communication

void join(address→a, mode→m) The join call is implemented by the ALM stack. It initi-

ates a group subscription. Depending on the mode, this may result in an IGMP/MLD join, if

the address equals a valid IP multicast address. The address of joins towards the overlay will

be pre-processed by the middleware to implement, e.g., group aggregation and broadcast. The

middleware creates a corresponding overlay key.

void leave(address→a, mode→m) This downcall is implemented by the middleware and

results in an unsubscription for the given address.

void send(address→a, mode→m, message→msg) This function is invoked at the middle-

ware to sent group data. If the overlay parameter has been con�gured, the middleware decides

to forward the data supplied with the corresponding key to the broadcast or multicast module

based on the destination address.

void receive(address→a, message→msg) This upcall is implemented by the application

and delivers overlay and underlay messages received at the node. The address represents the

destination used by the source application instance.

To request multicast states, we de�ne the following group service API:

nodehandle [] groupSet(mode→m) This operation returns all registered multicast groups.

The information can be provided by group management or routing protocols. The return values

distinguish between sender and listener states.

nodehandle [] neighborSet(mode→m) This function can be invoked at the middleware to

get the set of multicast routing neighbors.

bool designatedHost(address→a) This function is implemented by the middleware and re-

turns true, if the host has the role of a designated forwarder or querier. Such an information

is provided by almost all multicast protocols to handle packet duplication, if multiple multicast

instances serve on the same subnet.

address updateListener(mode→m) This upcall is invoked to inform a group service about a

change of listener states for a group. This is the result of receiver new subscriptions or leaves.

The group service may call groupSet to get updated information.

address updateSender(mode→m) This upcall is implemented by the middleware to inform

the application about source state changes. Analog to the updateListener case, the group

service may call thereupon groupSet.

In the next section we describe a deployment use case for such a modular group communication

stack.

83

5 Design of an Overlay Group Communication Architecture

Figure 5.4: The Hybrid Shared Tree Network Stack Highlighting the Overlay Components

5.3 Design of the Hybrid Shared Tree Architecture

In this section we will describe the design of the Hybrid Shared Tree (HST) architecture, which

is composed of a pre�x-based P2P group communication scheme and a relay agent forwarding

data between native and overlay multicast. The core component of the HST is the Inter-domain

Multicast Gateway (cf. section 2.4), an application which interacts with native and overlay

multicast (OLM) components via the enhanced group communication stack and thereby enables

relaying (cf. �gure 5.4).

5.3.1 The Inter-domain Multicast Gateway

The Inter-domain Multicast Gateway (IMG) transparently forwards multicast data between the

overlay and the native network. This gateway will participate in multicast tra�c originating

from its attached network, which it will forward into the overlay according to the distributed

multicast receiver domains of this group. It will also advertise group membership and receive

data according to any subscription from its IP multicast domain. With respect to an easy

deployment, the IMG should account for current multicast techniques.

The IMG represents a transition point between overlay and underlay. In this role it translates

between the di�erent protocols. A structured overlay multicast protocol does not provide any

explicit group management to discover the presence of underlay receivers, since applications

use direct API calls on the host. An IMG, which may represent a complete multicast domain

consisting of multiple receivers and sources, acts in this sense as a proxy. It aggregates and

then delegates underlay states to the overlay routing, as well as data originating from underlay

sources to the overlay routing.

General Protocol Description

The multicast overlay represents the routing backbone, connecting multiple multicast domains.

Hence, the construction and destruction of distribution branches will be triggered by the under-

lay, which includes receivers, sources, both or none of them. The IMG will be informed about

84

5.3 Design of the Hybrid Shared Tree Architecture

Receiver0,...,n Source0,...,n

Underlay
Multicast
Domain

Underlay
Multicast
Domain

IMG
Underlay

Mcast

Overlay

Mcast
IMG

Underlay

Mcast

Overlay

Mcast

Receiver
Subscription

Data

Overlay
Multicast
Domain

Figure 5.5: Schematic View of General IMG Scenarios

listener and sender activities from the native network by its group communication stack.

For simplicity, we describe the general protocol procedure in the case, that an IMG is placed

in a receiver domain, which consists of zero or more multicast listeners, and an IMG serving a

source domain with zero or more senders (cf. �gure 5.5).3

For treating new multicast parties on the underlay, the IMG operates as follows:

Multicast Source: If the IMG learns about new underlay sources, it immediately sends a

corresponding join to the underlay group management to receive its tra�c. Thus, the

IMG holds the data independent of receivers in other multicast domains. This data will

be sent internally to the overlay routing instance, which distributes the message with

respect to its forwarding states. If there is no subscription in the overlay, the data will be

discarded by the routing protocol and not transmitted into the overlay.

In contrast, an update about new sources propagated on the overlay takes no e�ect, as

joins are initiated only based on underlay subscriptions.

Multicast Receiver: For each receiver subscribing to a group as the �rst member in the un-

derlay network, the IMG invokes a join, processed by the middleware and delegated to

the overlay multicast routing protocol. The OLM instance initiates an overlay subscrip-

tion. Data from the source domain can be transmitted without additional signaling in the

underlay, as data is held at the corresponding IMG. Arriving overlay data in the receiver

domain will be forwarded transparently by the middleware to the IMG, which distributes

it via send into the native network.

If the IMG recognizes that the last receiver in the underlay network left the multicast

group, it has to send a leave message into the overlay to cut multicast branches.

Several IMGs can be deployed in one multicast domain for redundancy and load sharing.

Thus, it is important to prevent loops between underlay and overlay. Overlay multicast pro-

tocols in general do not implement coordinating mechanisms, since underlay distribution is

3For domains including both, senders and receivers, the IMG behavior can be derived by combining the separate

functions.

85

5 Design of an Overlay Group Communication Architecture

Multicast
Proxy

Multicast
Proxy

Multicast
Domain

Multicast
Domain

Figure 5.6: Two Small Size Multicast Domains Connected via an Overlay

performed outside the scope of these protocols. In contrast, common underlay multicast pro-

tocols are confronted with data redundancy. They have implemented appropriate forwarder

election mechanisms. For this reason, the IMGs should be aware of one another based on an

underlay assert signaling, which is assisted by the designatedHost call. If the status of the

designatedHost is false, the IMG does not send data towards overlay and underlay.

In the following we describe how the protocol concepts can be integrated in current multicast

scenarios. We distinguish between two cases: small size multicast domains without a routing

infrastructure, and large size domains, which are served by native multicast forwarders.

5.3.2 Connecting Small Size Domains

A small size multicast domain consists of one IP network. Two of them are visualized in �gure

5.6. Native multicast data communication is supported by group management and routing

protocols. Group management is implemented in IP by IGMP/MLD [19, 100].4 Multicast

receivers send MLD (un-)subscriptions to a standardized group address, such that (potential)

routers can track the presence of multicast listeners. Implementing MLD signaling represents

the minimal requirement for multicast enabled devices and can be assumed in any multicast

domain. The router part of MLD allows to monitor domain-wide group members by a query

report scheme. The IMG operates in the MLD router part.

Packets destined to a multicast group address may be broadcasted in switched ethernet do-

mains or selectively forwarded based on MLD snooping operated by domain switches. An MLD

snooping-enabled device should transmit group membership messages and multicast data only

to routers and subscribed receivers, i.e., it implements multicast on layer 2 [25].

Although MLD snooping is not standardized, its deployment is common practice [25]. How-

ever, an MLD node running the router part sends periodically group membership queries. This

allows not only for learning about active receivers, but also for preventing the suppression of

MLD signaling and source data by layer 2 devices.

Based on the groupSet call, the IMG requests the MLD state table, which provides infor-

4In the following we will only refer to MLDv2, because both terms can be used vice versa, as IGMPv3 implements

the same scheme for IPv4.

86

5.3 Design of the Hybrid Shared Tree Architecture

Multicast
Proxy

Multicast
Domain

Multicast
Domain

Multicast
Proxy

Figure 5.7: Two Large Size Multicast Domains Covering Multiple Layer 3 Networks (Dashed

Lines)

mation about active listeners. In combination with the update call, the IMG will be informed

about the �rst and last multicast receiver. The IMG then initiates join and leave calls towards

the overlay according to the general protocol description.

To avoid transmission loops in the case of multiple IMGs connecting to the same domain, one

of the relays has to be selected as forwarder. A common autonomous approach independent of

end systems is a selection based on lowest IP addresses. For this reason, nodes periodically send

generic protocol advertisements to the local domain and listen to noti�cations of other systems.

A node does not establish forwarding states, when it receives advertisements with a lower IP

address than its own. This is implemented in the MLD router part to avoid multiple group

queries and data duplications. Thus, only the IMG with lowest IP address acts as designated

relay between the overlay and a MLD domain.

Interconnecting multiple domains without deploying a multicast routing protocol is speci-

�ed in [38]. The IMG operates in concordance with this standard, which is solely based on

IGMP/MLD.

Running the IMG as MLD proxy easily allows to connect small multicast networks, which are

not neighboring. On the one hand, this approach reduces deployment complexity as the IMG

can be placed all over the multicast domain without obligation to maintain a multicast routing

protocol. On the other hand, this scheme limits its scope by the layer 3 region, because MLD

signaling is not forwarded across routers.

5.3.3 Connecting Large Size Domains

Connecting multicast islands by an IMG MLD proxy architecture requires a layer 2 access in

each local LAN. It does not scale to establish a separate proxy in any layer 2 domain of a

corresponding larger network. In addition, most larger network domains have established a

local host-group routing which provides domain-wide multicast, but fails on global multicast

connectivity. In such cases, an IMG should be incorporated into the local routing infrastructure

to interconnect larger native multicast islands (cf. �gure 5.7).

Like in the proxy scenarios, a hybrid multicast gateway must be aware of all groups inside

87

5 Design of an Overlay Group Communication Architecture

a multicast domain to initiate corresponding states in the overlay. In contrast to link-local

domains, which can solely be monitored by a group membership protocol, group states are

distributed in routed multicast sites. Hence, an IMG requires an interface to the routing infras-

tructure, where subscriptions occur. In general, this depends on the multicast routing protocol

deployed. In rendezvous point (RP) schemes like PIM-SM, all receiver subscriptions and source

data will be registered at the RP. Flooding schemes like DVMRP, however, distribute the in-

formation across all neighboring routers.

In the following, we sketch methods to integrate the IMG in a selection of multicast routing

architectures.

DVMRP In the Distance Vector Multicast Routing Protocol (DVMRP) [104, 74] source data

is �ooded covering all multicast domain routers. If no group member is present at the subnets

of a router, this router sends a prune message to its DVMRP neighbors to cut the multicast

distribution branch. DVMRP routers maintain information of source group pairs to prevent

incorrect data propagation and to incorporate new multicast branches. New receivers are inte-

grated by sending graft messages towards the multicast source. This activates new forwarding

states at intermediate routers. Thus, an arbitrary DVMRP router will not be informed about

new receivers, but will learn about new sources immediately.

The concept of DVMRP does not provide any central multicast instance. Thus, the IMG can

be placed anywhere inside the multicast region, but requires a DVMRP neighbor connectivity.

The group communication stack used by the IMG is enhanced by a DVMRP implementation.

New sources in the underlay will be advertised based on the DVMRP �ooding mechanism

and received by the IMG's DVMRP instance, which informs the group communication stack

middleware. The middleware delegates the call to the relay application. The relay agent initiates

a corresponding join in the native network and forwards the received source data towards the

overlay routing protocol. Depending on the group states, the data will be distributed to overlay

peers.

DVMRP establishes source speci�c multicast trees. Therefore, a graft message is only visible

for DVMRP routers on the path from the new receiver subnet to the source, but in general not

for the IMG. To overcome this problem, there are two approaches:

(1) In the case of smaller DVMRP domains, an IMG can be installed as proxy (cf. section

5.3.2) in each local subnet with respect to our general protocol description. This is an

appropriate option, as the deployment of DVMRP is limited. To avoid loops induced by

forwarding overlay multicast data also via DVMRP, the IMG has to send the data with a

time to live of one hop.

(2) In larger DVMRP networks, a single, domain-wide IMG should be deployed. This requires

to �ood the data of multicast senders in the overlay as well as in the underlay. Hence, an

IMG has to initiate an all-group join to the overlay using the namespace extension of the

API. Each IMG is initially required to forward the received overlay data to the underlay,

independent of native multicast receivers. Subsequent prunes may limit unwanted data

distribution thereafter.

PIM-SM The Protocol Independent Multicast Sparse Mode (PIM-SM) [39] establishes ren-

dezvous points (RP). These entities receive listener and source subscriptions of a domain. To be

88

5.3 Design of the Hybrid Shared Tree Architecture

continuously updated, an IMG has to be co-located with a RP. Whenever PIM register messages

are received, the PIM routing instance must signal a new multicast source towards the stack.

Subsequently, the IMG joins the group and a shared tree between the RP and the sources will

be established, which may change to a source speci�c tree after a su�cient number of data has

been delivered. Source tra�c will be forwarded to the RP based on the IMG join, even if there

are no further receivers in the native multicast domain.

Designated routers of a PIM-domain send receiver subscriptions towards the PIM-SM RP. The

reception of such messages invokes an update call at the IMG, which initiates a join towards the

overlay routing protocol. Overlay multicast data arriving at the IMG will then transparently

be forwarded in the underlay network and distributed through the RP instance.

PIM-SSM PIM Source Speci�c Multicast (PIM-SSM) is de�ned as part of PIM-SM and

admits source speci�c joins (S,G) according to the source speci�c host group model [47]. Based

on the unicast source address S, a multicast subscription can be forwarded directly to the

multicast sender. Hence, a multicast distribution tree can be established without the assistance

of a rendezvous point.

Sources are not advertised within a PIM-SSM domain. Consequently, an IMG cannot antici-

pate the local join inside a sender domain and deliver a priori the multicast data to the overlay

instance. If an IMG of a receiver domain initiates a group subscription via the overlay routing

protocol, relaying multicast data fails, as data are not available at the overlay instance.

The IMG instance of the receiver domain, thus, has to locate the IMG instance of the source

domain to trigger the corresponding join. In the sense of PIM-SSM, the signaling should not

be �ooded in underlay and overlay.

One solution could be to intercept the subscription at both, source and receiver sites: To

monitor multicast receiver subscriptions in the underlay, the IMG is placed on path towards the

source, e.g., at a domain border router. This router intercepts join messages and extracts the

unicast source address S, initializing an IMG speci�c join to S via regular unicast. Multicast

data arriving at the IMG of the sender domain can be distributed via the overlay.

Discovering the IMG of a multicast sender domain may be implemented analogously to AMT

[94] by anycast. Consequently, the source address S of the group (S,G) should be built based on
an anycast pre�x. The corresponding IMG anycast address for a source domain is then derived

from the pre�x of S.

BIDIR-PIM Bidirectional PIM [42] is a variant of PIM-SM. In contrast to PIM-SM, the

protocol pre-establishes bidirectional shared trees per group, connecting multicast sources and

receivers. The rendezvous points are virtualized in BIDIR-PIM as an address to identify on-

tree directions (up and down). However, routers with the best link towards the (virtualized)

rendezvous point address are selected as designated forwarders for a link-local domain and

represent the actual distribution tree.

The IMG should be placed at the RP-link, where the rendezvous point address is located. As

source data in either cases will be transmitted to the rendezvous point address, the BIDIR-PIM

instance of the IMG receives the data and can signal new senders towards the stack.

The �rst receiver subscription for a new group within a BIDIR-PIM domain needs to be

transmitted to the RP to establish the �rst branching point. Using the update invocation, an

IMG will thereby be informed about group requests from its domain, which are then delegated

89

5 Design of an Overlay Group Communication Architecture

to the overlay.

5.4 Design of the Pre�x Flooding & BIDIR-SAM

The bidirectional scalable adaptive multicast protocol (BIDIR-SAM) (cf. section 4.2) and the

pre�x �ooding (cf. section 3.2) are overlay group communication protocols used on top of a

pre�x-based KBR layer. The KBR layer serves as overlay unicast routing information base. It

should provide underlay proximity selection and is represented by Pastry in our implementation.

The overlay packet transmissions can be implemented using the KBR substrate or by a direct

TCP/IP socket connection to the destination. The �rst of these two options results in double

encapsulation and additional internal stack calls, which should be avoided to reduce packet size

and load inside the structured overlay. Thus, data messages as well as control messages are sent

directly via the TCP/IP layer. As both protocols may operate separately, they open di�erent

TCP/IP sockets using a prede�ned TCP port number.

To �nd the responsible peer for a given key, the key's root, the KBR routing table will be

searched by the local_lookup call of the common API by Dabek et al. [27] (cf. section 5.1.1).

This ensures the latest valid entry for the routing decision of BIDIR-SAM and the pre�x �ooding,

and does not cause additional signaling overhead. However, both protocols need awareness of

the key space to internally 'rebuild' the Pastry routing table. The parameters are con�gurable

in Pastry and available to BIDIR-SAM and the pre�x �ooding.

It is su�cient to use the key data type provided by the KBR as data structure for the pre�x

key. The generated key has to agree with the pre�x digits and carry the pre�x length. Each

overlay key corresponds to exactly one entry in the Pastry routing table. Thus, applying the

KBR lookup on such a key will determine the unique position inside the Pastry routing table

and return a valid peer.

Both schemes comply with the proposed API in section 5.2.3. However, as the pre�x �ooding

operates stateless and in particular without subscriptions triggered by applications, it does not

require any group management and provides only send and receive calls.

5.4.1 Tree Construction & Tree Maintenance for BIDIR-SAM

Each BIDIR-SAM peer creates a pre�x neighbor table maintained by group management func-

tions and used by the routing scheme. This table contains per group entries including the

corresponding destination pre�xes and refresh timers. Entries will be added according to the

BIDIR-SAM Join and deleted based on the BIDIR-SAM Leave algorithm (see section 4.2.

If a refresh timer expires, the maintenance routine is invoked to identify invalid neighbors.

For the construction and maintenance signaling we re-use parts of the tree life cycle message

scheme presented in [17] to keep messaging overlay agnostic. This generic ALM overlay de�nition

includes tree creation and maintenance messages, which are exchanged between the BIDIR-SAM

peers to update multicast forwarding states.

At �rst, we will describe the semantic of the join and leave message:

Join Message(PeerId k, GroupId g) is sent to inform pre�x neighbors about a new down-

stream peer k for group g. The reception of this message will create a new entry in the

pre�x neighbor list.

90

5.4 Design of the Pre�x Flooding & BIDIR-SAM

To Subtree
BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table
local_lookup

Update

Join

BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table local_lookup

lookup

Join(G)

Broadcast[Join]
BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table
local_lookup

update

Join

IP[Broadcast[Join]]

IP[Broadcast[Join]]

updateListener

updateListener

To Subtree

To Subtree

Figure 5.8: Schematic View of the Join Call Procedure

Leave Message(PeerId k, GroupId g) is used to inform pre�x neighbors that the down-

stream peer k does not belong to the group g anymore. The reception of this message will

delete the corresponding entry in the pre�x neighbor list.

If the join call is invoked (cf. �gure 5.8) by an application on top of BIDIR-SAM, the

multicast group address will be mapped to an overlay group id by the hash function. In the

next step, the pre�x neighbor table will be checked for entries. With respect to BIDIR-SAM

Join (cf. section 4.2), the pre�x neighbors will be calculated. As the join message has to

be broadcasted in the corresponding pre�x subtree, BIDIR-SAM passes the packet locally to

the pre�x �ooding. The pre�x �ooding initiates the broadcast dissemination procedure for the

given pre�x length. Underlay addresses required for forwarding will be resolved by the KBR

local_lookup. Now, the join message can be sent directly to the pre�x neighbors.

The reception of a join message will invoke in the updateListener call at the group commu-

nication stack to inform applications about a state change. Corresponding operations will be

performed on reception of a leave call at the group communication stack.

The multicast states of BIDIR-SAM can be inquired by the groupSet and neighborSet

functions. The �rst call returns all entries of the pre�x neighbor table, which may be NULL in

the absence of receivers. The latter call returns overlay unicast pre�x neighbors, i.e., all valid

pre�xes included in the Pastry routing table.

Although, the tree construction algorithm of BIDIR-SAM �lls and purges the pre�x neighbor

table correctly, entries may be invalidated due to silent disappearance of receivers from the

multicast overlay. To keep the multicast routing table updated, BIDIR-SAM is equipped with

a maintenance routine. The idea is the following soft state approach: When the refresh timer

expires for a pre�x neighbor, a peer sends a group query to it. If the receiving peer is not

a multicast listener and has no neighbor entry for the corresponding subtree, it sends a leave

message to the subtree originating the group query, otherwise it transmits a group report.

Invalid entries can be deleted based on the leave message or a timeout. In contrast, a group

report will reset the refresh timer and keep the entry.

For the maintenance mechanism, we extend the messages in [17] as they only provide a

heartbeat announcement:

Group Query(PeerId k, GroupId g) will be sent from k to the expired pre�x neighbor to

inquire for existing downstream neighbors. If no group report is received after a speci�c

time, the entry will be deleted.

91

5 Design of an Overlay Group Communication Architecture

To Subtree
BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table
local_lookup

Update

Join

BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table

lookup

Send(G, Msg)

BIDIRSAM[Msg]
BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table

lookup

BIDIRSAM[Msg]IP[BIDIRSAM[Msg]]

IP[BIDIRSAM[Msg]]

Receive(Msg)

Receive(Msg)

To Subtree To Subtree

local_lookuplocal_lookup

Figure 5.9: Schematic View of the Send Call Procedure for BIDIR-SAM

Group Report(PeerId k, GroupId g) will be transmitted, whenever a group query has

been received at the peer k and k's pre�x neighbor table contains entries larger than

or equal the destination pre�x. On reception of a group report, the inquirer will update

the refresh timer.

5.4.2 Data Distribution for Broadcast and Multicast

Multicast or broadcast data created by the applications are encapsulated in an overlay multicast

or broadcast data frame carrying overlay speci�c information. The data message frame contains

the destination pre�x length, and a sequence number to identify packet duplication or facilitates

further services like ordering, reliability and prevention of replay attacks. For BIDIR-SAM it

also carries the overlay group address to select the correct forwarding states.

BIDIR-SAM Data Message(Int k, GroupId g, Int seq) is used to encapsulate the ap-

plication data destined for group g. The message is forwarded to the TCP/IP layer and

transmitted to the pre�x neighbor. Based on the pre�x length k, the destination pre�x

will be reconstructed.

Broadcast Data Message(Int k, Int seq) encapsulates application data, which are to be

transmitted to all overlay peers. Based on the pre�x length k, the destination pre�x will

be reconstructed.

Invocation of send in BIDIR-SAM

When the multicast send call is invoked (cf. �gure 5.9), BIDIR-SAM checks for its local pre�x

neighbors according to the group address hash. Without entries, the packet is silently discarded.

Each existing pre�x is resolved by the KBR state access function local_lookup, which returns

a destination node handle including the IP address. The data obtained from the application

above BIDIR-SAM will be encapsulated in a BIDIR-SAM data message and sent via TCP to the

pre�x neighbor. The BIDIR-SAM recipient will encapsulate the message and deliver the data

via receive to the application, if the peer is a receiver. According to its entries in the pre�x

neighbor table and the BIDIR-SAM multicast routing, the message is duplicated and forwarded

to further neighbors.

92

5.4 Design of the Pre�x Flooding & BIDIR-SAM

To Subtree
BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table
local_lookup

Update

Join

BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table local_lookup

Send(Msg)

BIDIR-SAM

Prefix
Flooding

T
C
P
/
I
P

KBR

Prefix
Neighbor

Table
local_lookup

IP[Broadcast[Msg]]

IP[Broadcast[Msg]]

Receive(Msg)

To Subtree

Receive(Msg)

Figure 5.10: Schematic View of the Send Call Procedure for the Pre�x Flooding

Invocation of send in the Pre�x Flooding

In contrast to BIDIR-SAM, the broadcast send function does not require a forwarding state table

as the distribution tree can be resolved of the KBR (cf. �gure 5.10). Thus, it extracts all pre�x

neighbor keys, which can be derived from the Pastry routing table layout. The pre�x �ooding

then iterates over the Pastry pre�x table via local_lookup to get the corresponding underlay

addresses. The encapsulated data message is passed to the TCP/IP socket and distributed to

all available pre�x neighbors. The receiving peer forwards the data towards the application via

the receive call and distributes it to other pre�x neighbors.

5.4.3 Routing Maintenance on Pastry

BIDIR-SAM and the pre�x �ooding require a complete KBR routing table to ensure correct

message distribution. As Pastry does not guarantee this condition, we propose a proactive

maintenance mechanism, which periodically discovers overlay peers for empty routing table

entries.

The idea is the following: The routing maintenance iterates via local_lookup over the Pastry

routing table to �nd an empty entry. For such an entry, the routing maintenance initiates

the route call of the common KBR API for routing a maintenance message. This sends the

maintenance message to the key's root. The receiver will reply with its ID to the requesting

peer. Based on the answer, the maintenance peer veri�es, whether the key's root ID matches

the empty entry. If so, the overlay node will be merged into the Pastry routing table, otherwise

ignored.

As an overlay node is responsible for a set of keys, which may cover multiple routing table

entries of a peer, some empty entries can be omitted: We assume that the requested entry P
is empty. Receiving an answer from node P ′, the maintenance peer maps P ′ to its appropriate
position in the Pastry routing table and proceeds on the following entry. This skips all empty

columns between P and P ′.
For the routing maintenance routine we propose the messages:

Routing Maintenance Request(PeerId k) will be sent from k via the KBR to an overlay

key which matches an empty entry in the Pastry routing table.

Routing Maintenance Reply(PeerId k) will be sent from k on the reception of a routing

maintenance request message.

93

6 Implementation

6.1 Introduction

Aside from theoretical analysis, protocols can be evaluated based on real-world experiments,

emulations and simulations. Analyzing new structured P2P networks in a hands-on way is a

di�cult problem, as they are designed for a large number of participants. Many relevant protocol

e�ects will only become visible for network sizes varying over several orders of magnitude.

Real-world large-scale experiments require a wide testbed. There are public platforms avail-

able, which support researchers with a large number of accessible end devices. One of the most

popular project is PlanetLab admitting more than 800 nodes. However, due to frequent system

overuse, further platform-speci�c problem are induced. As stated by its inventors is not suitable

for reproducible experiments. Rhea et al. [80] show, that experiments conducted on PlanetLab

may be biased, because systems are overloaded and slow. As we are at the beginning of the

analysis of our protocols, it is important to obtain a clean, fundamental understanding. Thus,

we decided to avoid such 'sources of irritation', and concentrate on a controlled environment.

Real-world experiments on PlanetLab may be compared to our initial evaluations in future

experiments.

Network emulators represent a compromise between real-world deployment and simulations.

They are made to run on one or few hosts, using internals port as interprocess communication.

There are few developments around in the context of peer-to-peer, e.g., Overlay Weaver [90, 91].

However, they are usually dedicated to specialized tasks, i.e., P2P evaluations, and do not allow

an easy incorporation of additional node instances or protocols. As we want to evaluate our

protocol on top of Internet topologies in further experiments, we have settled for a rich simulator

platform.

The selection of a simulator for structured P2P networks should account for all the require-

ments above: feasibility of simulations with at least ten thousand nodes, availability of general,

non-P2P protocols and an interface to real-world networks. Additionally, for the analysis of our

protocols, the simulator needs to support Pastry as well as Scribe. With respect to a possible

code re-use of our implementation, the P2P API should implement the Dabek model (cf. section

5.1.1).

In many cases, current structured P2P simulators are limited to a few thousands of nodes [68]

or do not support multicast. Recent developments like PeerfactSim [54] have a strong focus on

realistic link delays for the underlying topology, but provide only a peer-to-peer environment

without a common network layer. An appropriate choice ful�lling the most important of our

requirements is the recently launched OverSim [10]. OverSim is implemented on the the well-

known generic network simulator OMNeT++ [99].

95

6 Implementation

6.2 A P2P Simulation Framework: OverSim

OverSim [10] is an open-source overlay network simulation framework for OMNeT++ [99],

developed at the University of Karlsruhe. OMNeT++ is discrete event simulation system,

programmed and extendable in C++. OverSim includes the following features [9]:

• a set of structured and unstructured P2P protocols

• a layer-based architecture conforming to the Dabek model

• three underlying network models

• application layer multicast support1

• scalability up to 100.000 nodes in very simple networks

• an injection option for real-world network tra�c.

However, the simulator includes some drawbacks. Up until now, there is no support to include

externally modeled or real-world topology data sets for setting up realistic underlay topologies.

It is likewise not possible to create multiple overlay services on the same P2P middleware layer.

In the following, we will describe the fundamental classes of OverSim representing the base

for our own developments.

Class Concept

OverSim includes a nested peer-to-peer layer, which consists of an overlay tier and three tiers de-

signed for applications and services (cf. �gure 6.1). This concept is re�ected by its classes. Over-

lay protocols are based on the BaseOverlay class and applications thereupon on the BaseApp

class. BaseApp provides new classes equipped with the common API by Dabek et al. (cf. section

5.1.1) and interfaces to the RPC and UDP layer. KBR calls invoke corresponding functions of

the BaseOverlay class, which have to be implemented by the KBR/DHT protocols. However,

KBR message routing calls are only available on tier 1. This limitation prevents services from

being implemented on an arbitrary tier if the routing API is required.

Overlay services and applications will be placed on tiers 1-3 within the OverSim P2P stack.

Although each module can include multiple submodules, the current design of OverSim does

not allow to derive several classes from the BaseApp that will be located on one tier.

6.3 Implementation in OverSim

In this section, we will sketch our implementation of the pre�x �ooding and BIDIR-SAM 6.2.

With respect to future updates, the implementation is guided by the attempt to leave original

OverSim classes unmodi�ed as far as possible. To discover memory leaks, we debugged our

software using Valgrind [96].

OverSim does not fully allow to deploy several protocols on one P2P layer, because inter-layer

communication does not provide virtualized ports. Recalling the concepts of our P2P group

communication stack, multiple protocols, i.e., broadcast and multicast should reside on one tier.

1Actually, application layer multicast was not available at the beginning of this work, but was provided later.

96

6.3 Implementation in OverSim

Figure 6.1: The Network Stack for a Simple OverSim Node Highlighting an Application on Tier

2 of the P2P Stack

97

6 Implementation

Figure 6.2: A BIDIR-SAM Network With 50 Peers Highlighting the Multicast Stack. Multicast

Receivers and Source are Colored in Red and Yellow Respectively.

Additionally, the proactive routing maintenance should not be intermingled with existing Pastry

code base. For this purpose, our module is implemented as an additional service on top of the

overlay. Thus, we designed a multiplexer delegating messages between tier 1 and further layers.

In addition to the pure protocol implemention, a test application is required to issue multicast

tra�c, as well as a global observer to conduct the experiment. The multicast observer module

controls the experiment, i.e., generates the multicast group address, selects source and receivers,

initiates data transmission via the test application and collects statistical data of experimental

outcome. The multicast test application performs the group join/leave and send/receive of

multicast data via the multicast API.

6.3.1 Pre�x Flooding

The pre�x �ooding class implements a message handler, which broadcasts all packets received

from upper applications to overlay nodes. We have to distinguish between source initiated

broadcast and forwarding of received packets. In the �rst case, the broadcast originates from

level 0 of the distribution tree. In the second case, a destination pre�x is received and forwarded

to the calculated pre�x neighbors. Additionally, the packet will be delivered to the application.

The distribution algorithm is equal for both cases. The corresponding code snippet is shown in

listing 6.1.

98

6.3 Implementation in OverSim

The pre�x neighbor will be calculated by a helper routine (createPrefixKey) based on the

current row and column, the local overlay ID and the Pastry key space parameters. The lookup

call inspects the KBR, i.e., Pastry routing table and resolves the IP address of the destination

pre�x. Finally, the message will be encapsulated in an internal stack message to send the

message out via the network layer.

1 void PastryBroadcast :: distributeBroadcast(PastryBroadcastMessage* msg , uint

row) {

2 //[...]

3 // Iterate over the Pastry table rows , start at destination prefix

4 for (uint i = row; i < pastryKeyLength; ++i) {

5 //For each column in the Pastry routing table

6 for(uint j = 0; j < pastryKeyBase; ++j) {

7 // Create prefix neighbor

8 prefix = PrefixKey :: createPrefixKey(ownKey , i, j, pastryKeyLength ,

bitsPerDigit);

9 // Resolve prefix via KBR API

10 nodeVector = callLocalLookup(prefix , 1, 1, false);

11 // Ignore empty RT entries

12 if(nodeVector ->size() == 1 && (!((* nodeVector)[0]. isUnspecified ()))) {

13 PastryBroadcastMessage *msgCopy = (PastryBroadcastMessage *) msg ->dup

(); // Create Broadcast message

14 msgCopy ->setPrefixlength ((i+1)*bitsPerDigit);

15 //[...]

16 // Encapsulate message for internal cast forwarding (multiplexing)

17 CastInternalUdpMsg* internmsg = new CastInternalUdpMsg ();

18 internmsg ->setDstIP ((* nodeVector)[0].ip);

19 //[...]

20 send(internmsg ,"from_bcast"); //Send message to Cast/transport layer

21 }

22 delete nodeVector;

23 }

24 }

25 }

Listing 6.1: Snippet of the Pre�x Flooding Forwarding Algorithm

6.3.2 BIDIR-SAM

In contrast to the pre�x �ooding, BIDIR-SAM requires group membership management. This

includes join/leave functions and the multicast fowarding table. The latter should be e�cient

to lookup pre�x neighbors for a multicast group. As the forwading algorithm operates similar

to the pre�x �ooding, we only focus on the group management in the following.

The multicast forwarding table is implemented as map data structure (cf. listing 6.2). It

consists of the group address as identi�er and an ordered multiset of destination pre�xes. Finding

destination pre�xes for given group is performed in O(log n). As the multicast set is ordered,

the forwarding algorithm iterates directly over the data structure and stops immediately at

insu�cient pre�x lengths. The average complexity also equals O(log n).

1 // BidirSAM.h

2 //[...]

3 typedef map <OverlayKey ,BidirSAMListeners > GroupList;

99

6 Implementation

4 GroupList groupList;

5 // BidirSAMListeners.h

6 class BidirSAMListeners {

7 public:

8 OverlayKey groupIdentifier;

9 BidirSAMListeners(OverlayKey groupId);

10 void addListeners(PrefixKey k);

11 void removeListeners(PrefixKey k);

12 PrefixKey getLongestPrefix ();

13 multiset <PrefixKey >:: iterator getListenersBegin ();

14 //[...]

Listing 6.2: Snippet of the Multicast Forwarding Table Declaration

The multicast group membership is twofold. For simplicity we only focus on the join: On the

one hand, receiver subscriptions initiated by the local application will be injected in the correct

pre�x subtrees. On the other hand, received joins have to be propagated towards the leaves.

Both functions use the pre�x �ooding module as shown for the join injection in listing 6.3.

1 void BidirSAM :: subscribeToGroup(OverlayKey groupId , BidirSAMCtrlInfo*

ctrlInfo) {

2 SAMJoinMessage* samjoinMsg = new SAMJoinMessage ();

3 samjoinMsg ->setGroupId(groupId);

4 //[...]

5 PastryBroadcastMessage* bcastMsg = new PastryBroadcastMessage ();

6 //[...]

7 // Insert group into grouplist , if unknown

8 groupInserter = groupList.insert(make_pair(groupId , BidirSAMListeners(

groupId)));

9 BidirSAMListeners& listeners = groupInserter.first ->second;

10 listeners.setSubscriptionStatus(true); // Set subscription status

11 // Inject BIDIR -SAM join

12 //First subscribed router to this group

13 if(listeners.empty()) {

14 // Initiate flooding

15 bcastMsg ->setPrefixlength (0);

16 bcastMsg ->encapsulate(samjoinMsg);

17 //[...]

18 sendDirect(bcastMsg ,0,bcastModule ,"direct_in" ,-1);

19 }

20 //Not first subscribed router to this group

21 else {

22 // Initiate partial flooding => select LCP

23 multiset <PrefixKey >:: iterator iLongestPrefix = listeners.

getListenersBegin ();

24 //[...]

25 //Start broadcast at routing table row

26 bcastMsg ->setPrefixlength ((longestPrefix.getOverlayKey ()).

sharedPrefixLength(thisNode.key));

27 bcastMsg ->encapsulate(samjoinMsg);

28 sendDirect(bcastMsg ,0,bcastModule ,"direct_in" ,-1);

29 }

30 }

Listing 6.3: Snippet of the Join Injection Implementation

100

6.4 Analytical Calculations

6.4 Analytical Calculations

For ease of use, our analytical calculations have mainly been untertaken using the data analysis

and graphing program Origin 8 [69]. This software includes a programming language that

supports ANSI C and can directly access internal Origin data sets. However, general numerical

data types of C (as well as C++) are incapable of processing the very large numbers required

to evaluate the expressions in common.

Although pre�x �ooding and BIDIR-SAM measures evaluate on a small scale, subexpressions

of the analytical functions can grow tremendously due to powers. Final values are frequently

obtained by quotients or di�erence cancelations, both of which are numerically sensitive. To

avoid numerical artifacts, we calculated values based on the arbitrary precision arithmetic library

Ap�oat [7]. Ap�oat is available for C++ and Java. In contrast to the standard arbitrary

precision data types of Java, this library provides various mathematical functions that are

important for our calculations, e.g., powers of real numbers.

101

7 Conclusion & Outlook

The Internet uniquely o�ers the service of distributing data in a multicast host group model.

Nevertheless, this fundamental service still su�ers from a state of deployment too restrictive to

allow for global dissemination of group communication services. This thesis is concerned with

the design and the analysis of a structured multicast overlay solution, which may augment the

Internet core and facilitate globally available & seamlessly integrated multicast network services

of general use.

7.1 Achievements of this Work

As the major contribution of this work, we have proposed and analyzed BIDIR-SAM, the

�rst structured overlay multicast scheme based on bi-directional shared pre�x trees. Data

distribution in BIDIR-SAM is guided along a logarithmically scalable source speci�c shortest

path tree, even though it follows the general Any Source Multicast Model scheme. We presented

a detailed concept for its deployment in a hybrid multicast architecture, combining IP and Layer

2 group communication services at edge networks with a structured overlay backbone on top of

the Internet core. The correctness of our algorithms has been proven. The analysis is justi�ed

by extensive theoretical and simulation-based results.

In our hybrid approach, unlike in conventional mono-layer solutions, the well-adopted native

multicast in enterprise domains is complemented by scalable, robust and transparent trans-

mission services on structured overlays. Resting upon this newly developed routing scheme,

the overlay will allow operators to deploy segregated, individually con�gurable multicast ser-

vices with rigorously predictable system load, while leaving the inter-domain Internet unicast

backbone untouched. Furthermore a shared per group forwarding decouples group state estab-

lishment from the data plane, which gives rise to an option of transparent, scalable support for

mobile group communication.

In detail, we have started with the broadcast scenario and presented the pre�x �ooding

approach (cf. chapter 3). This service on top of a key-based routing disseminates data at

predictable costs to all overlay members. We pursued a comprehensive discussion of our results

with respect to large-scale group communication. This included an elaboration on the problem

of building distribution trees from reverse pathes, while asymmetric routes are present in overlay

networks.

In chapter 4 we introduced and evaluated BIDIR-SAM, the overlay multicast approach to

scalable, pre�x tree dissemination.. This approach is well suitable for large-scale groups. Our

analytical work granted general insight into multicast forwarding on k-ary pre�x trees. This

outcome may be of further value for adjusting real-world deployment. Providers for example,

which use BIDIR-SAM in a hybrid environment, are thereby enabled to pre-calculate network

costs. Our simulations have been nicely explained by this theoretical analysis.

BIDIR-SAM establishes a virtual shared distribution tree in pre�x space, which is jointly

103

7 Conclusion & Outlook

known at routing peers. This collective knowledge o�ers a variety of additional functions, out of

which a scalable degree of reliability appears as most important. Without additional signaling,

but exploiting network coding, the overlay multicast scheme can assure a k-level redundancy

in data and routing paths. Similar strategies can be used to achieve a variable load sharing to

serve data intensive streams, e.g., in IPTV applications.

In chapter 5 we discussed the design of a generic group communication architecture combining

overlay and native multicast. We extend current structured P2P middleware approaches by a

universal multicast API, integrated into a group communication network stack. Further on,

the integration and implementation of the hybrid shared tree architecture for common Internet

multicast routing protocols has been detailed out. These results can be adopted for other hybrid

protocols, as well.

Finally, we implemented our protocols in the well-known P2P simulator OverSim, which was

discussed in chapter 6. This implementation covers the full protocol feature set and can be

used to extend this simulation framework by a DHT-based broadcast mechanism and the new

BIDIR-SAM multicast approach.

We would like to conclude that the initial idea of employing a pre�x-guided bi-directional

shared distribution tree led to a promising group communication scheme, which � as we believe

� will demonstrate its value in practice.

7.2 Future Tasks

This thesis gives results for overlay group communication and its deployment. Nevertheless,

during this work new questions opened on the one hand, which will be exciting to answer, and

some problems are unfortunately left open due to time and compute capacity restrictions, on

the other hand.

Additional Analytical and Simulation Analysis

For the pre�x �ooding and BIDIR-SAM, the most important next step leads to the protocol

analysis based on real-world topologies provided by CAIDA [55] and DIMES [89]. Such an

integration in the OverSim simulator has been omitted as it was not foreseen in the available

implementation and colleagues from the Athens University of Economics and Business currently

prepare corresponding add-ons. Real-world topologies and link delays represent the fundament

to gaining insight in proximity neighbor e�ects that reduce overlay stretch and stress.

Additionally, the analysis should include new topology models, like the dK-graphs [64], which

allow to perform evaluations on a downsized network still preserving characteristic graph prop-

erties [63]. This reduction is desirable with respect to memory and computation restrictions on

current computers. It would be interesting to see the sensitivity of our metrics on the underlying

topology.

Another topic for BIDIR-SAM is o�ered by the more complex evaluation of our proposed

optimizations. They have only been sketched and should be fully implemented in the existing

OverSim modules. Then, the simulation scenario should be enhanced for multiple multicast

sources and di�erent groups. Further on, we will include experiments on reliability with appro-

priate churn models representing varying application scenarios.

Beyond simulations or practical experiments we will re�ne our analytical work. Although the

104

7.2 Future Tasks

current outcome is quite expressive, simpler terms may be found and should also account for

our optimizations.

Real-World Deployment

The subsequent steps in the context of our group communication architecture would be a real-

world implementation of an underlay and overlay aware stack and its usage in an application

bene�ting from global multicast support. The latter is foreseen in cooperation with our video

conferencing partner [28]. The transparent group communication stack can be enriched by name

space support, which should be detailed out for DHTs in general.

The stack is a prerequisite to set up an IMG. With respect to a real deployment, the location

of the IMG within the network should be de�ned more precisely. Such positioning questions

can most likely be solved with the help of service placement theory.

It is also valuable to think about an adaptation of our pre�x-based distribution algorithms

to wireless sensor networks (WSNs). Commonly, structured overlay networks as well as WSNs

focus on the self-organization of its members. A multicast approach may facilitate WSNs with

data aggregation, which enhances transmission capacities and reduces power consumption. Our

pre�x-based scheme appears promising with its large-scale logarithmic performance behaviour.

Applicability to Multicast Mobility

Key-based routing provides a virtualized network layer. Decoupling hash keys from IP ad-

dresses e.g., by using location independent identi�ers, will provide applications with a routing

layer transparent under IP address changes. Hence, any overlay multicast protocol will preserve

distribution trees under mobility in contrast to native multicast. In addition, BIDIR-SAM in-

cludes a �exibility as it creates bi-directional shared trees, which decouple group and state man-

agement from the forwarding plane. Multicast transmission will thus be location-transparent.

Any multicast source can submit packets from any location to the same pre�x distribution tree

without the need of mobility-related signaling or assisting agents.

This property will likewise hold in hybrid Internet architectures, wherever intra-domain pro-

tocols re�ect mobility transparency. Thus in combination with Bidir-PIM at edge domains,

Hybrid Shared Tree will lead to a mobility-agnostic routing environment in the sense that lis-

teners and senders may freely move on an inter-domain scale, while a mobility-unaware routing

layer will equally enable multicast services. Senders can seamlessly transmit multicast data from

any location, while listeners can bene�t from uninterrupted services wherever they encounter

previously established group reception.

Applicability to Internet Routing

A challenging question remains about a direct applicability of our solution to the Internet routing

layer. Facing the ongoing debate on a clean slate replacement of the current Internet protocol

by routing on a �at, structured address space, one may re�ect on combining core ingredients of

the key-based routing with the currently deployed Internet architecture.

Following these considerations, it springs into mind that the current Classless Inter-domain

Routing � similar to Pastry � is based on pre�x routing and aggregation. However, two major

di�erences between DHT and Internet routing remain evident:

105

7 Conclusion & Outlook

1. Keys, or IP addresses need not be active and in particular there is no key ownership or a

key root.

2. The IPv4 address space is mainly unstructured, while there are some attempts to establish

a structure of pre�x aggregation in IPv6.

Thus, an immediate, unaltered transfer of the BIDIR-SAM pre�x-directed multicast distribu-

tion is not applicable. Fortunately, there are strong correspondences, which in particular hold

for IPv6.

Internet routers perform a pre�x aggregation inherently, i.e., an upstream router will always

know about the aggregation level it serves towards its downstream peers (for a certain address

space). Accordingly, a multicast join (or leave) received from a downstream interface can be

agglomerated with parallel joins to be tied to the pre�x level in operation. Consequently, any

router in the Internet will be able to identify its own pre�x aggregation level as well as its

immediate pre�x neighbors. Assuming a clear, hierarchical address structure as foreseen in

RFC 2374 [45], group management could proceed as in the BIDIR-SAM scheme. Unfortunately

RFC 2374 has been obsoleted due to the persistent customer demand for provider independent

addresses.1 To cope with unstructured address organization, a router receiving a join for a

speci�c multicast group needs to

• memorize the group and listener pre�x received in a multicast forwarding table;

• identify the corresponding pre�x level (according to the joining listener) it operates on;

• �ood the join message under pre�x aggregation to its remaining (downstream and up-

stream) interfaces, if the corresponding pre�x has not been signaled before;

• memorize the join �ooding state in a per interface table.

Subsequent joins need only to be communicated up to a level of aggregation, where they are

uncovered by previously joining group members. In this way, a shared pre�x tree will be erected

throughout the Internet analogously to BIDIR-SAM.

It may be however undesirable to initiate an Internet-wide distribution tree for any multicast

address. IPv6 therefore has foreseen scoping rules [44], but these only apply to local regions. To

enable arbitrarily restricted pre�x ranges of valid multicast dissemination, one could proceed as

follows: On creation of the group, a uniformly covering pre�x2 could be chosen and embedded

into the multicast group address in analogy to a rendezvous point address [85]. This pre�x

would then be interpreted as the root of the pre�x tree, preventing state distribution beyond

the region of interest for the group in common.

Multicast routing thereafter can proceed like in BIDIR-SAM on a bidirectional shared tree.

Destination pre�xes, which may be multiply required in topologies not following the pre�x

structure, are to be stored in a dedicate routing header. Routers will be equipped with a shared

virtual multicast forwarding table in pre�x space, which is downward directed and likewise

allows for a forward route selection. However, upward routing must be separately foreseen as

1Nevertheless, the IPv6 address space remains structured according to RIRs and the RIRs itself leverage a

structured address dissemination. Furthermore, address indirection approaches like LISP [36] try to regain

provider-bound address hierarchies by splitting locators and identi�ers.
2The pre�x 2001:0638::/29 could for example be chosen to restrict a group to the DFN community.

106

7.2 Future Tasks

follows: Any router receiving multicast data from a downlink with respect to the group tree

root as encoded in the multicast address, will forward the tra�c not only downwards according

to its multicast forwarding tables, but also direct it in upward direction towards the embedded

pre�x, which forms the tree root.

Following this scheme, multicast distribution is bi-directionally �ooded along a pre�x tree

spanning all receivers. Within a cleanly aggregated address space, such pre�x routing will be

strictly bound to provider borders and � if required � will cross peering links exactly once.

All fundamental properties, especially redundancy and mobility options, are inherited from

BIDIR-SAM.

Having sketched such solution, it appears promising and challenging at once to elaborate

on the details of such a protocol, which attempts to combine traditional IP-layer and struc-

tured overlay routing techniques. Future work will unveil the feasibility of such out-of-the-box

thinking.

107

Bibliography

[1] 3rd Generation Partnership Project, �Technical Speci�cation Group Services and System

Aspects; IP Multimedia Subsystem (IMS); Stage 2, 3GPP TS 23.228, Rel. 5 �.,,� 3rd

Generation Partnership Project, Tech. Rep., 2002 � 2007.

[2] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. New York: Dover

Publications, 1964.

[3] A. Adams, J. Nicholas, and W. Siadak, �Protocol Independent Multicast - Dense Mode

(PIM-DM): Protocol Speci�cation (Revised),� IETF, RFC 3973, January 2005.

[4] C. Adjih, L. Georgiadis, P. Jacquet, and W. Szpankowski, �Multicast Tree Structure and

the Power Law,� IEEE Transact. on Information Theory, vol. 52, no. 4, pp. 1508�1521,

2006.

[5] L. Aguilar, �Datagram Routing for Internet Multicasting,� in Proceedings of SIGCOMM

'84. New York, NY, USA: ACM Press, 1984, pp. 58�63.

[6] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, �Network Information Flow,� IEEE

Transactions on Information Theory, vol. 46, no. 4, pp. 1204�1216, 2000.

[7] �Ap�oat � High Performance Arbitrary Precision Arithmetic,� http://www.ap�oat.org/,

2008.

[8] S. A. Baset, H. Schulzrinne, and M. Matuszewski, �Peer-to-Peer Protocol (P2PP),�

P2PSIP Working Group, IETF Internet Draft � work in progress 01, November 2007.

[9] I. Baumgart, B. Heep, and S. Krause, �OverSim: A Flexible Overlay Network Simulation

Framework,� in Proceedings of the 10th IEEE Global Internet Symposium, M. Faloutsos

et al., Eds. Washington, DC, USA: IEEE Computer Society, 2007, pp. 79�84.

[10] I. Baumgart, B. Heep, S. Krause, and S. Mies, �The OverSim P2P Simulator,�

http://www.oversim.org, 2008.

[11] S. Bhattacharyya, �An Overview of Source-Speci�c Multicast (SSM),� IETF, RFC 3569,

July 2003.

[12] E. W. Biersack, �Where is Multicast Today?� Computer Communication Review, vol. 35,

no. 5, pp. 83�84, 2005.

[13] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu et al., �Bimodal Multicast,�

ACM Trans. Comput. Syst., vol. 17, no. 2, pp. 41�88, 1999.

109

Bibliography

[14] S. Birrer and F. E. Bustamante, �The feasibility of dht-based streaming multicast,� in

MASCOTS '05: Proceedings of the 13th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 288�298.

[15] A. Brown and M. Kolberg, �Tools for Peer-to-Peer Network Simulations,� P2PRG, IRTF

Internet Draft � work in progress 0, January 2006.

[16] J. Buford, �Hybrid Overlay Multicast Framework,� SAM RG, IRTF Internet Draft � work

in progress 2, February 2008.

[17] J. Buford, �SAM Overlay Protocol,� SAM RG, IRTF Internet Draft � work in progress 1,

March 2008.

[18] M. Caesar, M. Castro, E. B. Nightingale, G. O'Shea, and A. Rowstron, �Virtual Ring

Routing: Network Routing Inspired by DHTs,� SIGCOMM Comput. Commun. Rev.,

vol. 36, no. 4, pp. 351�362, 2006, proceedings of the SIGCOMM conference 2006.

[19] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, �Internet Group Man-

agement Protocol, Version 3,� IETF, RFC 3376, October 2002.

[20] M. Castro, M. Costa, and A. Rowstron, �Debunking some myths about structured and

unstructured overlays,� in NSDI'05: Proceedings of the 2nd Symposium on Networked

Systems Design & Implementation. Berkeley, CA, USA: USENIX Association, 2005, pp.

85�98.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. I. T. Rowstron et al., �Split-

Stream: High-Bandwidth Content Distribution in Cooperative Environments,� in Peer-

to-Peer Systems II. Second International Workshop, IPTPS 2003 Berkeley, CA, USA,

February 21-22, 2003 Revised Papers, ser. LNCS, M. F. Kaashoek and I. Stoica, Eds., vol.

2735. Berlin Heidelberg: Springer�Verlag, 2003, pp. 292�303.

[22] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, �SCRIBE: A large-scale and

decentralized application-level multicast infrastructure,� IEEE Journal on Selected Areas

in Communications, vol. 20, no. 8, pp. 100�110, 2002.

[23] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer et al., �An Evaluation

of Scalable Application-level Multicast Built Using Peer-to-peer Overlays,� in Proceedings

of the Twenty-Second Annual Joint Conference of the IEEE Computer and Communica-

tions Societies (Infocom 2003), vol. 2. Washington, DC, USA: IEEE Computer Society,

2003, pp. 1510�1520.

[24] R. C. Chalmers and K. C. Almeroth, �On the topology of multicast trees,� IEEE/ACM

Trans. Netw., vol. 11, no. 1, pp. 153�165, 2003.

[25] M. Christensen, K. Kimball, and F. Solensky, �Considerations for Internet Group Man-

agement Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches,�

IETF, RFC 4541, May 2006.

110

Bibliography

[26] J. C. I. Chuang and M. A. Sirbu, �Pricing Multicast Communication: A Cost-Based

Approach,� Telecommunication Systems, vol. 17, no. 3, pp. 281�297, 2001, presented at

the INET'98, Geneva, Switzerland, July 1998.

[27] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, �Towards a Common API

for Structured Peer-to-Peer Overlays,� in Peer-to-Peer Systems II, Second International

Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-22,2003, Revised Papers, ser.

LNCS, M. F. Kaashoek and I. Stoica, Eds., vol. 2735. Berlin Heidelberg: Springer�Verlag,

2003, pp. 33�44.

[28] �daviko � digital audio video communication,� http://www.daviko.com, 2008.

[29] S. E. Deering, �Host Extensions for IP Multicasting,� IETF, RFC 1112, Aug. 1989.

[30] S. E. Deering, �Multicast Routing in a Datagram Internetwork,� Ph.D. dissertation, Stan-

ford University, Stanford, CA, USA, December 1991.

[31] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, �Deployment Issues for

the IP Multicast Service and Architecture,� IEEE Network Magazine, vol. 14, no. 1, pp.

78�88, 2000.

[32] P. Druschel et al., �FreePastry,� http://freepastry.rice.edu/FreePastry/, 2008.

[33] S. El-Ansary, L. A. Alima, P. Brand, and S. Haridi, �E�cient Broadcast in Structured

P2P Networks,� in Peer�to�Peer Systems II. Second International Workshop, IPTPS 2003

Berkeley, CA, USA, February 21-22, 2003 Revised Papers, ser. LNCS, F. Kaashoek and

I. Stoica, Eds. Berlin Heidelberg: Springer�Verlag, 2003, vol. 2735, pp. 304�314.

[34] ETSI EN 302 304, �Digital Video Broadcasting (DVB); Transmission System for Handheld

Terminals (DVB-H),� ETSI, European Standard (Telecommunications series), November

2004.

[35] S. Fahmy and M. Kwon, �Characterizing Overlay Multicast Networks and Their Costs,�

IEEE/ACM Transactions on Networking, vol. 15, no. 2, pp. 373�386, 2007.

[36] D. Farinacci, V. Fuller, D. Oran, and D. Meyer, �Locator/ID Separation Protocol (LISP),�

IETF, Internet Draft � work in progress 07, April 2008.

[37] A. Feldmann, �Internet Clean-Slate Design: What and Why?� SIGCOMM Comput. Com-

mun. Rev., vol. 37, no. 3, pp. 59�64, 2007.

[38] B. Fenner, H. He, B. Haberman, and H. Sandick, �Internet Group Management Proto-

col (IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("IGM-

P/MLD Proxying"),� IETF, RFC 4605, August 2006.

[39] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, �Protocol Independent Multicast

- Sparse Mode (PIM-SM): Protocol Speci�cation (Revised),� IETF, RFC 4601, August

2006.

[40] A. Garyfalos and K. Almeroth, �A Flexible Overlay Architecture for Mobile IPv6 Multi-

cast,� IEEE Journal on Selected Areas in Communications, vol. 23, no. 11, pp. 2194�2205,

November 2005.

111

Bibliography

[41] A. Ghodsi, L. O. Alima, S. El-Ansary, A. Ghodsi, P. Brand et al., �Self-Correcting Broad-

cast in Distributed Hash Tables,� in Proceedings of 15th International Conference Parallel

and Distributed Computing and Systems (PDCS'03), T. Gonzalez, Ed. Calgary, AB,

Canada: ACTA Press, 2003.

[42] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, �Bidirectional Protocol Indepen-

dent Multicast (BIDIR-PIM),� IETF, RFC 5015, October 2007.

[43] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, �Bi�directional Protocol Inde-

pendent Multicast (BIDIR-PIM),� IETF, Internet Draft � work in progress 09, February

2007.

[44] R. M. Hinden and S. E. Deering, �IP Version 6 Addressing Architecture,� IETF, RFC

4291, February 2006.

[45] R. M. Hinden, M. O'Dell, and S. E. Deering, �An IPv6 Aggregatable Global Unicast

Address Format,� IETF, RFC 2374, July 1998.

[46] H. Holbrook and B. Cain, �Source-Speci�c Multicast for IP,� IETF, RFC 4607, August

2006.

[47] H. Holbrook, B. Cain, and B. Haberman, �Using IGMPv3 and MLDv2 for Source-Speci�c

Multicast,� IETF, RFC 4604, August 2006.

[48] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, �A Survey of

Application-Layer Multicast Protocols,� IEEE Communications Surveys & Tutorials,

vol. 9, no. 3, pp. 58�74, 2007.

[49] IEEE 802.16 Working Group, �802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005: Stan-

dard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile

Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control

Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum

1,� IEEE, New York, IEEE standard, February 2006.

[50] T. Inoue and R. Kurebayashi, �Evaluating the Impact of Tunneling on Multicast E�-

ciency,� in 2005 Asia-Paci�c Conference on Communications. Piscataway, NJ, USA:

IEEE Press, October 2005, pp. 254�258.

[51] M. Janic and P. Van Mieghem, �On properties of multicast routing trees,� Int. J. Commun.

Syst., vol. 19, no. 1, pp. 95�114, 2006.

[52] D. B. Johnson, C. Perkins, and J. Arkko, �Mobility Support in IPv6,� IETF, RFC 3775,

June 2004.

[53] K. Katrinis and M. May, �Application�Layer Multicast,� in Peer�to�Peer Systems and

Applications, ser. LNCS, R. Steinmetz and K. Wehrle, Eds. Berlin Heidelberg: Springer�

Verlag, 2005, vol. 3485, ch. 11, pp. 157�170.

[54] S. Kaune, A. Kovacevic, K. Gra�, and K. Pussep, �PeerfactSim.KOM � Peer-to-Peer

Simulator,� http://www.peerfact.org/, 2008.

112

Bibliography

[55] kc cla�y et al., �CAIDA,� http://www.caida.org, 2008.

[56] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, �Probabilistic Reliable Dissemination

in Large-Scale Systems,� IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 3, pp. 248�258,

2003.

[57] J. Li, K. Sollins, and D.-Y. Lim, �Implementing Aggregation and Broadcast over Dis-

tributed Hash Tables,� SIGCOMM Comput. Commun. Rev., vol. 35, no. 1, pp. 81�92,

2005.

[58] S.-Y. R. Li, R. W. Yeung, and N. Cai, �Linear Network Coding,� IEEE Transactions on

Information Theory, vol. 49, no. 2, pp. 371�381, 2003.

[59] W. Li, S. Chen, P. Zhou, X. Li, and Y. Li, �An E�cient Broadcast Algorithm in Dis-

tributed Hash Table Under Churn,� in Proceedings of the International Conference on

Wireless Communications, Networking and Mobile Computing (WiCom'07). Washing-

ton, DC, USA: IEEE Computer Society, 2007, pp. 1929�1932.

[60] B. Lim and K. Ettikan, �ALM API for Topology Management and Network Layer Trans-

parent Multimedia Transport,� individual, IRTF Internet Draft � work in progress 0,

January 2008.

[61] M.-J. Lin and K. Marzullo, �Directional Gossip: Gossip in a Wide Area Network,� in

EDCC-3: Proceedings of the Third European Dependable Computing Conference on De-

pendable Computing, ser. Lecture Notes in Computer Science, vol. 1667. London, UK:

Springer-Verlag, 1999, pp. 364�379.

[62] P. G. López, C. Pairot, R. Mondéjar, J. P. Ahulló, H. Tejedor et al., �PlanetSim: A New

Overlay Network Simulation Framework,� in Proceedings 4th International Workshop on

Software Engineering and Middleware (SEM 2004). Revised Selected Papers, ser. LNCS,

T. Gschwind and C. Mascolo, Eds., vol. 3437. Berlin Heidelberg: Springer�Verlag, 2005,

pp. 123�136.

[63] P. Mahadevan, C. Hubble, D. Krioukov, B. Hu�aker, and A. Vahdat, �Orbis: Rescaling

Degree Correlations to Generate Annotated Internet Topologies,� in Proceedings of the

2007 conference on Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM '07). New York, NY, USA: ACM, 2007, pp. 325�336.

[64] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, �Systematic topology analysis and

generation using degree correlations,� in Proceedings of the 2006 conference on Applica-

tions, technologies, architectures, and protocols for computer communications (SIGCOMM

'06). New York, NY, USA: ACM, 2006, pp. 135�146.

[65] P. Merz and K. Gorunova, �E�cient broadcast in P2P Grids,� in Proceedings of the Fifth

IEEE International Symposium on Cluster Computing and the Grid (CCGrid'05), vol. 1.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 237�242.

[66] N. Mimura, K. Nakauchi, H. Morikawa, and T. Aoyama, �RelayCast: A Middleware

for Application-level Multicast Services,� in Proceedings of the 3st IEEE/ACM Interna-

tional Symposium on Cluster Computing and the Grid (CCGRID '03), S. Matsuoka and

Y. Ishikawa, Eds. Washington, DC, USA: IEEE Computer Society, 2003, pp. 434�441.

113

Bibliography

[67] T. Munzner, E. Ho�man, K. Cla�y, and B. Fenner, �Visualizing the Global Topology of

the MBone,� in Proceedings of the 1996 IEEE Symposium on Information Visualization

(INFOVIS '96). Washington, DC, USA: IEEE Computer Society, 1996, pp. 85�92.

[68] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman et al., �The State of

Peer-to-Peer Simulators and Simulations,� SIGCOMM Comput. Commun. Rev., vol. 37,

no. 2, pp. 95�98, 2007.

[69] �OriginLab � Data Analysis and Graphing Software,� http://www.originlab.com/, 2008.

[70] V. Paxson, �End-to-End Routing Behavior in the Internet,� IEEE/ACM Trans. Netw.,

vol. 5, no. 5, pp. 601�615, 1997.

[71] G. Phillips, S. Shenker, and H. Tangmunarunkit, �Scaling of multicast trees: comments

on the chuang-sirbu scaling law,� in SIGCOMM '99: Proceedings of the conference on

Applications, technologies, architectures, and protocols for computer communication. New

York, NY, USA: ACM Press, 1999, pp. 41�51.

[72] C. Plaxton, R. Rajaraman, and A. Richa, �Accessing Nearby Copies of Replicated Objects

in a Distributed Environment,� in Proc. of 9th ACM Sympos. on parallel Algor. and Arch.

(SPAA). New York, NY, USA: ACM Press, June 1997, pp. 311�330.

[73] H. Pucha, S. M. Das, and Y. C. Hu, �Ekta: An E�cient DHT Substrate for Distributed

Applications in Mobile Ad Hoc Networks,� in Proceedings of the 6th IEEE Workshop on

Mobile Computing Systems and Applications (WMCSA 2004). Washington, DC, USA:

IEEE Computer Society, December 2004, pp. 163�173.

[74] T. Pusateri, �Distance Vector Multicast Routing Protocol,� IETF, Internet Draft � work

in progress (expired) 11, October 2003.

[75] Y. Qiao and F. E. Bustamante, �Structured and unstructured overlays under the micro-

scope: A measurement-based view of two P2P systems that people use,� in Annual Tech

'06: Proceedings of the ANnual Technical Conference on USENIX. Berkeley, CA, USA:

USENIX Association, 2006, pp. 341�355.

[76] S. Ratnasamy, A. Ermolinskiy, and S. Shenker, �Revisiting IP Multicast,� in Proceedings

of the 2006 conference on Applications, technologies, architectures, and protocols for com-

puter communications (SIGCOMM '06). New York, NY, USA: ACM Press, 2006, pp.

15�26.

[77] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, �A Scalable Content-

Addressable Network,� in SIGCOMM '01: Proceedings of the 2001 conference on Applica-

tions, technologies, architectures, and protocols for computer communications. New York,

NY, USA: ACM, 2001, pp. 161�172.

[78] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, �Application-Level Multicast

Using Content-Addressable Networks,� in Networked Group Communication, Third Inter-

national COST264 Workshop, NGC 2001, London, UK, November 7-9, 2001, Proceedings,

ser. LNCS, J. Crowcroft and M. Hofmann, Eds., vol. 2233. London, UK: Springer�Verlag,

2001, pp. 14�29.

114

Bibliography

[79] S. P. Ratnasamy, �A Scalable Content-Addressable Network,� Ph.D. dissertation, Univer-

sity of California, Berkeley, October 2002.

[80] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker, �Fixing the Embarrassing Slowness

of OpenDHT on PlanetLab,� in Proceedings of the 2nd conference on Real, Large Dis-

tributed Systems (WORLDS'05), vol. 2. Berkeley, CA, USA: USENIX Association, 2005,

pp. 1�6.

[81] I. Romdhani, M. Kellil, H.-Y. Lach, A. Bouabdallah, and H. Bettahar, �IP Mobile Mul-

ticast: Challenges and Solutions,� IEEE Comm. Surveys & Tutorials, vol. 6, no. 1, pp.

18�41, 2004.

[82] A. Rowstron and P. Druschel, �Pastry: Scalable, distributed object location and rout-

ing for large-scale peer-to-peer systems,� in IFIP/ACM International Conference on Dis-

tributed Systems Platforms (Middleware), Nov. 2001, pp. 329�350.

[83] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, �Scribe: The Design of a

Large-Scale and Event Noti�cation Infrastructure,� in Networked Group Communication.

Third International COST264 Workshop, NGC 2001. Proceedings, ser. LNCS, J. Crowcroft

and M. Hofmann, Eds., vol. 2233. Berlin Heidelberg: Springer�Verlag, 2001, pp. 30�43.

[84] J. H. Saltzer, D. P. Reed, and D. D. Clark, �End-to-End Arguments in System Design,�

ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277�288, Nov. 1984.

[85] P. Savola and B. Haberman, �Embedding the Rendezvous Point (RP) Address in an IPv6

Multicast Address,� IETF, RFC 3956, November 2004.

[86] T. C. Schmidt and M. Wählisch, �Predictive versus Reactive � Analysis of Handover

Performance and Its Implications on IPv6 and Multicast Mobility,� Telecommunication

Systems, vol. 30, no. 1/2/3, pp. 123�142, November 2005.

[87] T. C. Schmidt and M. Wählisch, �Morphing Distribution Trees � On the Evolution

of Multicast States under Mobility and an Adaptive Routing Scheme for Mobile SSM

Sources,� Telecommunication Systems, vol. 33, no. 1�3, pp. 131�154, December 2006.

[Online]. Available: http://dx.doi.org/10.1007/s11235-006-9010-4

[88] T. C. Schmidt and M. Wählisch, �Multicast Mobility in MIPv6: Problem Statement

and Brief Survey,� MobOpts, IRTF Internet Draft � work in progress 03, February

2008, previous track: draft-schmidt-mobopts-mmcastv6-ps-02.txt. [Online]. Available:

http://tools.ietf.org/html/draft-irtf-mobopts-mmcastv6-ps

[89] Y. Shavitt et al., �The DIMES project,� http://www.netdimes.org, 2008.

[90] K. Shudo et al., �Overlay Weaver: An Overlay Construction Toolkit,�

http://overlayweaver.sourceforge.net/, 2008.

[91] K. Shudo, Y. Tanaka, and S. Sekiguchi, �Overlay Weaver: An Overlay Construction

Toolkit,� Computer Communications, vol. 31, no. 2, pp. 402�412, 2008, special issue on

foundations of peer-to-peer computing.

115

http://dx.doi.org/10.1007/s11235-006-9010-4
http://tools.ietf.org/html/draft-irtf-mobopts-mmcastv6-ps

Bibliography

[92] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applications, ser. LNCS.

Berlin Heidelberg: Springer-Verlag, 2005, vol. 3485.

[93] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, �Chord: A scalable

peer-to-peer lookup service for internet applications,� in SIGCOMM '01: Proceedings of

the 2001 conference on Applications, technologies, architectures, and protocols for com-

puter communications. New York, NY, USA: ACM Press, 2001, pp. 149�160.

[94] D. Thaler, M. Talwar, A. Aggarwal, L. Vicisano, and T. Pusateri, �Automatic IP Multicast

Without Explicit Tunnels (AMT),� IETF, Internet Draft � work in progress 9, June 2008.

[95] D. Thaler, �Border Gateway Multicast Protocol (BGMP): Protocol Speci�cation,� IETF,

RFC 3913, September 2004.

[96] �Valgrind,� http://www.valgrind.org/, 2008.

[97] P. Van Mieghem, Performance Analysis of Communications Networks and Systems. Cam-

bridge, New York: Cambridge University Press, 2006.

[98] P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad, �On the E�ciency of Multi-

cast,� IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 719�732, 2001.

[99] A. Varga et al., �The OMNeT++ discrete event simulation system,�

http://www.omnetpp.org, 2008.

[100] R. Vida and L. H. M. K. Costa, �Multicast Listener Discovery Version 2 (MLDv2) for

IPv6,� IETF, RFC 3810, June 2004.

[101] S. Voulgaris and M. van Steen, �Hybrid Dissemination: Adding Determinism to Proba-

bilistic Multicasting in Large-Scale P2P Systems,� in Middleware 2007, ser. Lecture Notes

in Computer Science, R. Cerqueira and R. Campell, Eds., vol. 4834. Berlin Heidelberg:

Springer-Verlag, November 2007, pp. 389�409.

[102] M. Wählisch and T. C. Schmidt, �Between Underlay and Overlay: On Deployable, E�-

cient, Mobility-agnostic Group Communication Services,� Internet Research, vol. 17, no. 5,

pp. 519�534, 2007, selected papers from the TERENA networking conference 2007.

[103] M. Wählisch and T. C. Schmidt, �Exploring the Routing Complexity of Mobile

Multicast � A Semi-empirical Study,� in Proceedings of 2007 ACM CoNEXT

Conference. Student Workshop, S. Banerjee, R. Karrer, and A. Sridharan, Eds.

New York: ACM, December 2007, extended abstract. [Online]. Available: http:

//www.sigcomm.org/co-next2007/papers

[104] D. Waitzman, C. Partridge, and S. Deering, �Distance Vector Multicast Routing Protocol,�

IETF, RFC 1075, November 1998.

[105] H. Yu and J. Buford, �Advanced Topics in Peer-to-Peer Overlay Multicast,� in Encyclo-

pedia of Wireless and Mobile Communications, B. Fuhrt, Ed. Boston, MA, USA: CRC

Press, 2008.

116

http://www.sigcomm.org/co-next2007/papers
http://www.sigcomm.org/co-next2007/papers

Bibliography

[106] T. Zahn and J. Schiller, �MADPastry: A DHT Substrate for Practicably Sized MANETs,�

in Proc. of 5th Workshop on Applications and Services in Wireless Networks (ASWN

2005), Paris, France, June 2005.

[107] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph et al., �Tapestry: A Re-

silient Global-Scale Overlay for Service Deployment,� IEEE Journal on Selected Areas in

Communications, vol. 22, no. 1, pp. 41�53, January 2004.

[108] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz, �Bayeux: An

Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination,� in NOSS-

DAV '01: Proceedings of the 11th international workshop on Network and Operating Sys-

tems Support for Digital Audio and Video. New York, NY, USA: ACM, 2001, pp. 11�20.

[109] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz, �Bayeux:

An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination,� in Pro-

ceedings of the 11th International Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV '01), J. Nieh and H. Schulzrinne, Eds. New

York, NY, USA: ACM, 2001, pp. 11�20.

117

	Introduction
	IP Layer Multicast
	Intra-Domain Multicast
	Inter-Domain Multicast
	Mobile Multicast

	Overlay Multicast
	Hybrid Multicast
	Problem Statement and Approach to Solution

	Related Technologies
	Structured Overlay Networks
	Pastry
	Scribe
	The Hybrid Shared Tree Architecture

	Broadcast in DHTs
	Introduction
	A Prefix Flooding Approach
	Performance Analysis
	Analytical Results
	Simulation Results

	Related Work
	Discussion

	Prefix-based Overlay Multicast
	Introduction
	BIDIR-SAM -- Scalable Adaptive Multicast on Bi-directional Shared Trees
	The Core Protocol
	Optimization Options

	Performance Analysis
	Analytical Results
	Simulation Results

	Related Work
	Discussion

	Design of an Overlay Group Communication Architecture
	Concept of a Common API for Structured Overlay Routing
	The Dabek Model

	A Middleware for Structured P2P Group Communication
	Current State of the Art
	Current Challenges
	A Common Network Stack for Group Communication

	Design of the Hybrid Shared Tree Architecture
	The Inter-domain Multicast Gateway
	Connecting Small Size Domains
	Connecting Large Size Domains

	Design of the Prefix Flooding & BIDIR-SAM
	Tree Construction & Tree Maintenance for BIDIR-SAM
	Data Distribution for Broadcast and Multicast
	Routing Maintenance on Pastry

	Implementation
	Introduction
	A P2P Simulation Framework: OverSim
	Implementation in OverSim
	Prefix Flooding
	BIDIR-SAM

	Analytical Calculations

	Conclusion & Outlook
	Achievements of this Work
	Future Tasks

	Bibliography

