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ABSTRACT
Bluetooth Low Energy (BLE) is today’s most popular low-power
radio technology with compelling radio performance and battery-
friendly characteristics, making it a promising deployment option
for the Internet of Things (IoT). Little is known, however, about
the performance and pitfalls when utilizing BLE as link layer in
multi-hop IP over BLE scenarios, because of the lack of available
software platforms and deployment experiences. In this work, we
present both a fully open-source, configurable software platform
and experiments to analyze multi-hop BLE network behavior. Our
experiments, conducted in a larger testbed, reveal unexpected per-
formance drawbacks. Even in scenarios with underutilized links,
BLE connections break randomly. This results into large trans-
mission delays on the network layer and thus hinders real-world
deployments in the constrained IoT. As key reason for this behavior
we identify the BLE connection interval. A deterministic interval
leads to unpredictable link behavior and connection losses due
to overlapping connection events. We propose randomizing con-
nection intervals as mitigation strategy and demonstrate that this
prevents connection losses and sporadic link degradation, improv-
ing the overall network behavior.

CCS CONCEPTS
• Networks → Network protocol design; Network experimenta-
tion; Short-range networks; Network reliability.
ACM Reference Format:
Hauke Petersen, Thomas C. Schmidt, and Matthias Wählisch. 2021. Mind
the Gap: Multi-hop IPv6 over BLE in the IoT. In The 17th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’21), December 7–10, 2021, Virtual Event, Germany. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3485983.3494847

1 INTRODUCTION
Bluetooth Low Energy (BLE) is the most deployed low-power wire-
less technology today, and deployment numbers are projected to
grow significantly in the next years [24]. This availability paired
with competitive radio performance and low power characteristics
make BLE a promising choice for Internet of Things (IoT) applica-
tions. The envisioned disruption [34], however, did not happen so
far. One of the reasons lies in the silo characteristic of the Bluetooth
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Table 1: Comparison of common IoT radios.

Radio ( =high . . . =low support)

BLE (mesh) BLE (star) IEEE 802.15.4 LoRa WLAN

Throughput
Range
Node Count
Energy Efficiency
Available on devices

standard [23], which prevents BLE-based applications to be inte-
grated in heterogeneous application contexts typically demanded
in the IoT. Current BLE communication is limited to confined sce-
narios such as directly connected consumer devices or beacon sys-
tems (e.g., [30, 44]).

The foundation for opening up BLE to thewider IoTwas laid with
the standardization of IPv6 over Bluetooth Low Energy (6LoBLE)
[33], which defines the usage of BLE as a link layer in IPv6-based
6LoWPAN networks. Together with the advanced standardization
of IPv6 mesh over BLE networks [20] this allows for large scale
multi-hop deployments, introducing both BLE performance and
low energy properties as well as Internet principles such as inter-
operability and openness.

Table 1 qualitatively compares the most common link layer tech-
nologies used in the IoT today. While BLE features very low energy
consumption [32, 38], it suffers from limited range and node count
when used in its designated star topology. BLE mesh networks
mitigate these limitations. There exist multiple approaches to BLE
mesh networks [12, 18, 42], including the Bluetooth Mesh standard
[9], but none of these support IP connectivity. Since we consider
IP end-to-end connectivity as key driver for the future IoT, these
concepts are not discussed further in this work. To become a rele-
vant deployment option, two contributions for multi-hop IP over
BLE are missing: a deeper understanding of the characteristics
and limitations of its network performance, and available software
platforms.

In this work, we systematicallymeasure key performancemetrics
of multi-hop IPv6 over BLE in a medium scale real-world deploy-
ment of low-power hardware. Based on 15 low-power nodes in
the FIT IoTlab testbed [5] we analyze reliability, latency, through-
put, and energy consumption in common IoT scenarios. We show
that multi-hop IP over BLE is not only feasible but outperforms
IEEE 802.15.4, even though, in contrast to IEEE 802.15.4, BLE was
never designed for IP multi-hop operation. Our experiments reveal
the impact of connection shading, i.e., time domain interferences of
independent BLE connections, on connection stability and network
latency. We propose a solution to mitigate the discovered issues.

Over the last decade, no low-power link layer technology has
managed to become a clear go-to solution for the IoT. We argue that
BLE has the potential to change this for three reasons: its popularity,
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Figure 1: Border Router (6LBR), router (6LR), and non-router
(6LN) roles versus BLE roles of nodes in a star topology [33]
(left) and a more flexible 6BLEMesh topology [20] (right).

its best-in-class energy efficiency [32, 38], and its network perfor-
mance characteristics. Prior work is only based on simulation, car-
ried out on a very small number of nodes, or deployed on hardware
that is not low-power. The implementation of software platforms is
mainly hindered because most Bluetooth stacks do not provide any
or only a largely simplified set of IP functionalities. Furthermore,
the majority of Bluetooth stacks are proprietary, challenging devel-
opers to integrate third party IP network stacks. As a step towards
missing software platforms, we present the first open source plat-
form with full support for multi-hop IP over BLE. The presented
platform is based on two well established open source projects,
RIOT with its IP stack [8] and the Apache NimBLE BLE stack [1].

In summary, our main contributions are the following:

(1) An open-source, full feature implementation of IP multi-
hop over BLE [7] that is on par with common IoT hardware
resources. (§ 3)

(2) Reproducible experiments thatmay guide future research. (§ 4)
(3) A comprehensive performance evaluation of multi-hop IP

over BLE in mid-sized networks. We reveal drawbacks in
multi-hop BLE that are amplified by local clock drifts, show
trade-offs, and compare with IEEE 802.15.4. Even in scenarios
with moderate network load, multi-hop BLE may easily fail
to provide predictable, reliable transport. (§ 5)

(4) We identified connection shading to be the core reason for
unexpected performance penalties in BLE and applications
on top. We present a mitigation strategy that provides full
reliability for common IoT applications. Our proposal is
standard-compliant. (§ 6)

In the remainder, we will introduce background in § 2, present
our contributions in § 3–§ 6, discuss related work and overall find-
ings in § 7 and § 8, and conclude in § 9.

2 BACKGROUND
The IPv6 over BLE (6LoBLE) standard [33] and the Internet Service
Support Profile [22], extended by the IETF IPv6 Mesh over BLE
(6BLEmesh) draft [20], define that IP data is to be transferred using
the connection-based mode of BLE. As a detailed understanding of
this mode is crucial to analyze its impact on network performance,
this section will explain relevant background.

  BLE Stack

  Host

Low Energy (LE) Controller

Physical Layer (PHY)

Link Layer (LL)

IP Stack     

Network layer 
(IPv6, 6LoWPAN)

Transport Layer (e.g. UDP)

Application Layer (e.g. CoAP)
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Logical Link Control and Adaption Protocol (L2CAP)

Host Controller Interface (HCI)

Figure 2: IP over BLE architecture.

2.1 IP over BLE
For each BLE connection, one node must take the role of a connec-
tion coordinator, while the other node takes the role of a connection
subordinate.1 In contrast to the star topology that was forced in
older Bluetooth versions, Bluetooth 4.2 (and more recent) allow for
devices to carry out both roles simultaneously, laying the founda-
tion for actual connection-based mesh networks. Figure 1 illustrates
the differences between a star topology compliant to RFC 7668 [33]
and a mesh network formed by nodes in various roles.

Figure 2 depicts the generic protocol stack architecture to trans-
fer IP data over BLE links. IP packets are handed from the IP stack
to Bluetooth’s Logical Link Control and Adaption Protocol (L2CAP)
layer. The L2CAP layer provides so calledConnection Oriented Chan-
nels with Credit based Flow Control, which work similar compared
to a pipe and guarantee full duplex, reliable, and in-order transfer
of IP data.

2.2 BLE Connections
To improve reliability, BLE connections employ time-sliced channel
hopping (TSCH) as follows: In the time domain, a connection is
split into fixed-size time slices called Connection Events, with the
interval between two consecutive events denoted as Connection
Interval. All packets exchanged during a single connection event
are transmitted on one of 37 possible frequencies (data channels).
For each subsequent connection event the frequency is switched
following one out of two defined channel selection algorithms (CSA).
By enabling these algorithms to further restrict the pool of used
channels based on channel maps, BLE allows for Adaptive Channel
Hopping (ADH). However, the Bluetooth standard only defines
means for updating and applying those channel maps. It does not
describe how to implement the ADH algorithms. It leaves this
completely to implementers of controllers.

Each connection event follows a strict packet flow (cf., Figure 3).
Each event is started by the coordinator sending a packet to the
subordinate. After receiving the packet, the subordinate will reply
with a packet after a fixed amount of time called the inter frame
spacing (IFS), which is exactly 150𝜇s for the 1Mbps PHY mode. This
packet exchange is done at least once in every connection event.
1The terms “coordinator” and “subordinate” used in this paper diverge from Bluetooth
specifications, to support non-discriminatory language.



Mind the Gap: Multi-hop IPv6 over BLE in the IoT CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

time
Coordinator

node

Subordinate
node

TX

connection event N
on radio channel A

RX

fixed inter frame spacing
T_IFS

TX RX

RX TX

TX RX TX RX

RX TX RX TX RX TX

connection interval

TX RX TX RX

RX TX RX TX

maximum time for packet exchanges

radio idle
connection event N+1
on radio channel A+x

connection event N+2
on radio channel A+2x

end of connection
event N T_IFS

Figure 3: Packet flow for a single connection. Packets may be exchanged until the next connection event starts minus the inter
frame spacing to allow for radio setup. If none of the peers has data to transfer, a connection event includes two empty packets.

In case that none of the peers has any data to transmit, empty
payloads are exchanged. Every packet carries a More Data (MD)
flag, which can be set by each peer to signal to the connection
partner that the node has more data to transfer. If more data is
ready for transfer, it is up to the coordinator to decide to start one
or more additional packet exchanges in the same connection event.
Each of the additional packet exchanges inside a connection event
has to start exactly one single IFS interval after the last packet was
received from the subordinate. Peers may exchange packets until
one of two conditions is fulfilled: (i) the next connection event of
current connection starts, or (ii) a BLE activity unrelated to the
current BLE connection needs access to the radio, e.g., a connection
event of a different connection or an advertising event. In either case,
a spacing of at least a single IFS interval between the last received
packet by the coordinator and the first packet of the subsequent
event must be kept.

Packets are acknowledged between coordinator and subordinate
using a 1-bit sequence number that is piggy bagged in the link layer
header of each packet. Any lost packet is retransmitted until a valid
acknowledgment has been received.

To optimize the energy consumption of a subordinate, the Blue-
tooth standard further allows connection subordinates to skip a
certain number of connection events. This number is defined as
Subordinate Latency. To prevent dead connections from drowning
a controller, BLE defines a Supervision Timeout. If the time between
the last and next valid packet received exceeds this supervision
timeout, the connection is considered to be lost and terminated. In
§ 5, we will analyse reasons for reaching this timeout.

The timing parameters, the subordinate latency, and the CSA
in use are initially defined by the connection coordinator during
connection initiation. After a connection is opened, the Bluetooth
standard defines a set of link layer control mechanisms that can be
used to update these parameters on-the-fly.

2.3 Multi-role Configuration
Since version 4.2, Bluetooth enables a node to act as coordinator
and subordinate at the same time for different connections. This
challenges the networked system: nodes that attain both roles have
to synchronize events and timings with multiple peers because each
connection does have its independent set of parameters.

One challenge a multi-role node faces is that a connection coor-
dinator dictates the point in time when an initial connection event

time

(5) connection C2 opened, all idle

(6) C0 with maximum link utilization, restricted now by C2

(1) connection C0 active, connection is idle without data transfer 

(2) C0 with maximum link utilization

(3) connection C1 opened, both idle

(4) C0 with maximum link utilization, restricted by C1

RX/TX sequence

Figure 4: Packet flow from a single node with a one, two, and
three concurrent connections. In each scenario, the node tries
to transfer asmuch data as possible over connection C0, while
the capacity of C0 decreases with each additional connection.

starts, and with this the starting point of each subsequent connec-
tion event. If a subordinate maintains two or more connections,
this can lead to overlapping connection events and hence prevents
this node to properly respond to each event. Unfortunately, the
Bluetooth standard does not specify any mitigation strategy for
this problem, which we tackle in § 6.

The timing of connection events dictated by the coordinator
introduces fluctuating capacities of single connections. To illustrate
this, Figure 4 shows the data transfer from the perspective of a single
node. Step (1) depicts a single connection C0 in idle state. Step (2)
shows the full utilization of C0, packets can be exchanged until
the next connection event for C0 starts. In step (3), an additional
connection C1 was opened, and step (4) illustrates the maximal
possible utilization of C0 in this case. Now, the maximum time
available for packet exchanges is limited by the start of the following
connection event of C1. Steps (5) and (6) show the same situation
after a third connection C2 was opened, decreasing the capacity of
C0 even further.

It is not surprising that each additional connection leads to less
radio time for other connections. It is worth noting, though, that
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Figure 5: Our software architecture to integrate IP over BLE.

the amount of time each connection may use fully depends on the
relative timing of the starting points of the connection events. As
the coordinator defines the timing of a new connection, without any
knowledge about other potential connections subordinates might
maintain, the relative timing of connection events for indepen-
dent connections on the subordinate node becomes unpredictable.
Considering our example above and assuming that the node is
subordinate for C1 and C2, the relative position of the connection
events of C1 and C2 are completely random from the perspective
of the node. Consequently, the link capacity for C0 is randomized
as well, as it depends on those relative positions.

3 MULTI-HOP BLE SOFTWARE PLATFORM
For IP over BLE to become a feasible choice for IoT applications
there is a need for portable, low-power, secure, and accessible soft-
ware platforms. Currently, the number of platforms that supports
to run IP over BLE applications is limited. One reason for this small
number of options is that the complexity of the Bluetooth Standard.
This is especially true for the Bluetooth Low Energy Controller part,
as the controller has very strict timing requirements. This complex-
ity is a major reason for most available BLE stack implementations
to be hardware-vendor specific and closed source. Although these
vendor stacks are mostly stable and offer a wide range of BLE fea-
tures, they have three significant drawbacks: (i) they tend to be
difficult to integrate with external system software and operating
systems, (ii) they offer none or only very rudimentary Internet
Protocol support, and (iii) they raise security concerns due to their
closed source nature. To mitigate these effects, a portable, fully open
source platform is preferred, allowing the user to have full control
over every aspect of the stack and allowing for seamless integration.

We present a new software platform based on the IoT operating
system RIOT [8], its GNRC network stack [31], and the Apache
NimBLE Bluetooth Low Energy stack [1]. Figure 5 illustrates the
basic architecture of our integration of RIOT and NimBLE. NimBLE
was ported to RIOT as an external package, allowing it to be man-
aged by the RIOT build system while mapping all of its system layer
interfaces onto RIOT APIs. Additionally, we added a wrapper called
nimble_netif on top of NimBLEs L2CAP and GAP APIs to expose
BLE as link layer to the RIOT GNRC network stack. This module
forwards IP packets between the IP stack and the L2CAP connection
oriented channels opened by the corresponding BLE connections.

Typical machine-to-machine scenarios need automated man-
agement of BLE connections, because nodes advertise themselves,

scan for neighbors, and decide on when to open or close BLE con-
nections to whom. The Internet Service Support Profile specifies
how nodes can check for neighbor’s IP capabilities but does not
define any connection management strategies. Only Lee et al. [29]
propose connection management in BLE based on RPL meta data.
To cater for different connection management strategies in the fu-
ture, our proposed software architecture features a modular design
that allows for implementation and selection of different strategies.
For the experiments presented in this work, we implement a con-
nection manger called statconn, which enables static connection
management. Based on a predefined configuration, a node starts
advertising its presence (subordinate role), or starts scanning for ad-
vertisements sent by the configured peer and initiates a connection
(coordinator role). The statconnmodule monitors the health of each
configured connection. If a connection is dropped, the module goes
back into advertising/scanning mode to reopen the lost connection.

4 EVALUATION SETUP
In this section, we present the experiment setup to evaluate the
performance of IP over BLE networks in typical IoT scenarios, using
our software platform in a large-scale testbed.

4.1 Testbed and Hardware Platforms
We conduct all experiments in the FIT IoTlab [5], a public testbed
for constrained IoT devices. For the BLE-based measurements, we
use 15 nodes (ten nrf52dk and five nrf52840dk nodes) at the Saclay
site. All nodes are located in the same room, arranged in a 1m×1m
grid (see Figure 6(a)). We had to limit the number of nodes because
other BLE capable boards in the IoTlab had not enough memory,
were too unstable, or are located in a separate room with unreliable
connectivity to the other nodes. The nrf52dk nodes are equipped
with Nordic nRF52832 SoCs featuring an Arm Cortex-M4F micro
controller, 65Kbyte RAM, and 512Kbyte flash. The nrf52840dk nodes
feature a more recent Nordic nRF52840 SoC, also with an Arm
Cortex-M4F core but 256Kbyte RAM and 1Mbyte of flash memory.
Both SoCs include a BLE radio that allows for low-level software
access.

To compare BLE with IEEE 802.15.4, we use 15 m3 nodes at the
Strasbourg site of the IoTlab. These nodes feature an STM32F103
Arm Cortex-M3 micro controller paired with a IEEE 802.15.4 radio
and provide 64Kbyte of RAM and 256Kbyte of ROM. Platforms
such as TinySDR [28] are out of scope for this paper, as we do not
need the flexibility of software-defined radio but focus on scenarios
using an integrated stack of a multi-purpose operating system.

4.2 Software Configuration
For all experiments, we use the software platform introduced in § 3
based on RIOT version 2021.01 and NimBLE version 542806a (de-
velopment branch). Please note that we cannot use the latest stable
release of NimBLE as we contributed a number of bug fixes, which
are not merged yet but essential to run multi-hop BLE without
disturbances. If not noted otherwise, we use the default configura-
tions.

Regarding the GNRC network stack, we enable the 6LoWPAN
router on all nodes and enable gcoap to include support for the
Constrained Application Protocol (CoAP) [37]. We disable router



Mind the Gap: Multi-hop IPv6 over BLE in the IoT CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

nrf52dk-2 nrf52dk-3 nrf52dk-4 nrf52dk-5

nrf52dk-10

nrf52840dk-8

nrf52840dk-7 nrf52840dk-9

8

12 13

7

54

9

2 3

10

14

nrf52840dk-6 nrf52840dk-10

6

nrf52dk-1

1

1m

1m

15

nrf52dk-9nrf52dk-6 nrf52dk-7 nrf52dk-8

11

(a) Spatial placement.

6

Consumer Producer

8 121

13 7

5 15

4 9 2 3

11 1014

(b) Tree topology.

6 7 8 9 10

11 12 13 14 15

1 2 3 4 5

Consumer Producer

(c) Line Topology.

Figure 6: Physical locations and statically configured BLE connections of nodes used in our experiments.

advertisements, because they are not needed, and increase the
maximum number of entries in the neighbor information base to
32, to reach all nodes. The GNRC packet buffer is left to its default
value of 6144 bytes.

In all measurements, we deploy the basic BLE PHY mode of
1Mbps because the nrf52dk nodes do not support other modes. As
in the default configuration of NimBLE in RIOT, the link layer
data length extension is enabled and NimBLE’s packet buffer is
configured to be 6600 bytes. It is worth noting that we found BLE
channel 22 permanently jammed by an external signal. To prevent
a bias in our results, all nodes are statically configured to not use
this channel.

The statconn connection manager handles connections on each
node, using an advertising interval of 90ms for nodes in a subordi-
nate role and a scan interval and a scan window of 100ms for nodes
in a coordinator role. This configuration leads to an average delay
between a connection loss and a reconnect event in the range of
10ms – 100ms.

To analyze the state of the network and to track packet flows, we
dump events to the STDIO of each node. This is based on a custom
event handler, integrated into NimBLE and GNRC modules. This
handler is designed carefully to keep the order of events intact and
to restrict the number of characters per event to the minimum such
that they do not exceed the IoTLab’s STDIO capacity.

4.3 Topologies and Traffic Patterns
We deploy two different network topologies, a tree topology with
a maximum hop count of 3 and a line topology with a hop count
of 14 nodes. While the tree topology resembles a setup that is
commonly found in real-world IoT applications, the line topology
resembles an extreme case that allows to examine the packet tra-
versal via long routes (see Figure 6). For the tree topology, we select
nodes in a randomized fashion to prevent a bias towards an opti-
mized topology. In the line topology, nodes simply connect to their
physical neighbors. Both topologies are configured statically as
follow: (i) the BLE connections are setup using the statconn connec-
tion manager and (ii) the IP routes are manually configured to build
routes that forward IP traffic towards the root of the tree or one end
of the line. All BLE nodes are in radio range of each other and the
node selection has a negligible impact on the experiment results.
The use of mobile nodes and dynamic BLE topology building is left
for future research.

Although the standards would allow us to deploy IP over BLE
in fully meshed topologies, we did not consider full meshes in this
work for two reasons: First, a common IPv6 routing protocol for

low-power IoT networks, RPL [43], is tree-based. Second, the radio
scheduling as well as constrained memory limit the maximum num-
ber of simultaneous BLE connections for each node. To fully exploit
BLE connections, we decided to focus on link layer topologies that
resemble the network layer topologies.

We assume a producer-consumer scenario to generate IP traffic.
In every experiment, 14 nodes are configured as producers, while
the root node of the tree and one node at the end of the line topology
are configured as consumer nodes. Each producer periodically sends
a CoAP non-confirmable GET request with a preconfigured payload
of 39bytes to the consumer. The consumer node responses with a
CoAP acknowledgment for each request it receives. To prevent all
producers from sending their requests at the same time, a jitter is
added to the producer interval. Overall, IP packet sizes are 100bytes,
and final BLE packet sizes are 115bytes. Keeping the packet size
below 128bytes allows for direct comparison of IEEE 802.15.4 and
BLE, without introducing fragmentation [? ].

If not stated differently, we use a default producer interval of
1s ±0.5s. We select this interval because it stresses the network
sufficiently to reveal typical characteristics, without being effected
by overflowing buffers (see § 5.2), and as it reflects typical IoT
network load [25]. We further use a default BLE connection interval
of 75ms as it provides a suitable trade-off between packet latency
and scheduling collisions at the radio of a node.

5 BASIC PERFORMANCE PROPERTIES
In this section, we analyze four key metrics, reliability, latency,
throughput, and power consumption, to understand the basic per-
formance of multi-hop IP over BLE networks. We mainly focus on
(i) the packet delivery rate and (ii) the round trip time (RTT) of
CoAP packets. (i) is defined as the ratio of CoAP ACKs received
to the number of CoAP requests sent; (ii) is the time difference be-
tween the moment a CoAP request is handed to the network stack
until the moment when the corresponding CoAP ACK is handed
back to the application on the same node.

We vary the topologies, sending interval at producers, and the
BLE connection intervals at all nodes to analyze different network
scenarios. Experiments run for 1 hour (3600s), and we carefully ver-
ified that this runtime is sufficient to observe the effects discussed
below. To rule out further side effects, every experiment is repeated
5× (see Appendix B). We also verified that the impact of the selected
nodes does not bias our results. We measured the same results for
each set of experiments. To analyze the results of each parameter
set in detail, in this section, we show the results of a single 1 hour
run per configuration.
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Figure 7: Overview of typical reliability and latency characteristics for a tree and a line network topologies. Both experiments
use a BLE connection interval of 75ms and a producer interval of 1s ±0.5s.

5.1 Moderate Network Load Scenario
Figure 7(a) summarizes the reliability and latency for the tree and
the line topologies, using a producer interval of 1s ±0.5s and a BLE
connection interval of 75ms for each BLE connection. During the 1h
experiment runtime, the tree and the line topologies experience a
packet loss of 26 out of 50,527 and 20 out of 50,412 packets, leading
to packet delivery rates of 99.949% and 99.960%, respectively. All
packet losses can be attributed to intermediate BLE connection
losses. While a link experiences connection loss, all data traffic that
tries to traverse that link is dropped. In our setup, the packet loss is
relatively small due to the quick reconnect mechanism implemented
in the statconn connection manager. In real world deployments it
is likely that this reconnection mechanism is slower, as one would
relax the advertising and scanning parameters to optimize for power
efficiency. It is worth noting that broken BLE links may lead to
changes of the IP network topology on top, introducing possibly
even larger delays due to the need for IP routing to reconfigure.

The latency of IP packets transferred over a single hop BLE link
does not only depend on the BLE connection latency but also on
the relative timing between the moment the packet is handed to
the IP stack and the start of the next connection event [13]. This
leads to a packet delivery latency that jitters in the range of a few
milliseconds up to the used connection interval. For multi-hop
configurations this effect accumulates for each link that a packet
traverses. Figure 7(b) shows the RTT CDF of a particular experi-
ment run. We observe the same characteristics for all other network
configurations that we analyzed. The results show that most of the
packet deliveries directly reflect the network topology (i.e., path
length) and the BLE connection interval. The RTT for packets in

the line topology is a factor of 3.5 larger than for packets in the
tree topology reflecting the average hop count (7.5 vs 2.1). A small
number of packets (<3%), however, is prone to increased delays of
multiple connection intervals. This effect is caused by link layer
packet losses. Each time a link layer packet is lost, the BLE con-
troller resends this packet one connection event later, adding a full
connection interval to the packet latency.
Delay and BLE connection interval:. Figure 8(a) illustrates
the impact of the BLE connection interval on the CoAP RTT in a
network forming the 3-hop tree topology. It can be observed, that
the majority of the packets experiences a round trip time between
a single connection interval and 4× the connection interval. As
the average hop count in this particular topology is 2.14, these
delays are as expected. Notable is once more the possible runaway
delays for selected runs. Looking at the experiment with 100ms
BLE connection interval, selected packets experience delays that
are factor 22 higher then the connection interval.

Especially when looking at at round trip times when using larger
BLE connection intervals, it becomes clear that the packet delay
can easily grow into seconds, and therefore in the range of typical
timeout value for IP protocols like CoAP or TCP. This can lead to
unnecessary IP layer packet retransmissions if the original packet
is not delivered.

In contrast to the BLE connection interval, the producer interval
does not have significant impact on the packet delays, as long as
the network is able to handle the applied packet load. Figure 8(b)
illustrates that a fixed BLE connection interval of 75ms exhibits sim-
ilar performance in terms of delay compared to producer intervals
of 1s and larger. Slight variations can be explained by the impact of
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(a) Varying BLE connection intervals under moderate load.
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(b) BLE connection interval of 75ms under varying load.

Figure 8: Round trip times of CoAP messages in a tree topology.
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background noise in the testbed. Only for producer intervals that
trigger network loads exceeding the networks capacity, increased
packet delays can be observed.

5.2 High Network Load Scenario
In this scenario, we put the network under stress by increasing the
traffic until link layer capacities are exceeded and packet losses
occur. The experiments are designed to understand where these
losses occur, how they caused, and whether further effects such as
increased delays become apparent.

As a baseline using our BLE platform, we were able to achieve
a raw L2CAP data throughput of close to 500kbps on a single link
between two nrf52dk nodes. When setting the producer interval to
100ms ±50ms, in our tree topology, all 14 producer nodes generate
a constant rate of 128.8kbps CoAP request packets towards the
consumer node. Ideally, the consumer node would reply acknowl-
edgment packets with a rate of 96.3kbps, in case every request
arrives at the consumer in the first place. Although this traffic sce-
nario requires at most 45% of the available capacity of a single link,
significant packet losses already occur.

Figure 9 illustrates the relative PDR of one 1h experiment run
for two different connection intervals, 75ms (top) and 2s (bottom).
For a connection interval of 75ms, the average PDR is ≈ 75%. All
packet losses can be attributed to overflowing packet buffers. When
the capacity of selected links is saturated, packets that wait to be
transmitted on those links are buffered and eventually dropped
when buffer space exceeds. The results in Figure 9(a) illustrate two
more typical behaviors, which we encountered in all load scenarios
we measured. First, the PDR is distributed unevenly among the
producers, clearly highlighted by larger fluctuations around the av-
erage PDR and clearly visible in the heatmap. This can be explained
by the uneven distribution of the radio capacity across connections
of a node (see § 2). The network load leads to links exceeding their
capacity, which results into packet losses at both the node itself
and all child nodes in the subtree. Second, we observe multiple
occurrences of sudden PDR increases, most notably after ≈ 52min.
The cause for the these jumps are beneficial reconnection events
between nodes. By chance the new connection events are moved to
time slots exhibiting a better position relatively to the events of the
existing connections of a node. This leads to increased capacities of
the affected links, and more transported packets increase the PDR
of the affected producer and its child nodes.

The PDR decreases further when we increase the BLE connec-
tion interval to 2s and configure a producer interval of 1s ±0.5s
(Figure 9(b)). The reason for this is the change from constant bit
rate towards burst traffic, and burst traffic has even more negative
impact on the link capacity and packet buffers. In detail, when
IP packets are handed to the BLE stack, they have to wait for the
next connection event to occur until they are transferred, and thus
are queued during that time. An increase of the BLE connection
interval now leads to longer time spans during which packets to
be transferred accumulate. When the next connection event starts,
all packets from the transmit queue are sent in one single event,
hence leading to bursts of packets being transferred at once. In case
of packet loss on the link layer, however, the Bluetooth standard
defines that a connection event is aborted, even though there are
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(b) CoAP PDR for BLE connection interval of 2000ms and pro-
ducer interval of 1s ±0.5s.

Figure 9: Effects of high network load and slow connection
intervals on CoAP packet delivery rates in tree topology.

still packets waiting to be transferred. As the probability of link
layer packet loss is increasing with the number of packets that are
exchanged in a single connection event, the probability of aborting
connection events increases as well, preventing links from reaching
their capacity.

5.3 Comparison with IEEE 802.15.4
We comparemulti-hop BLEwith IEEE 802.15.4 for two reasons. First,
due to historic development and its simplicity to use, IEEE 802.15.4
is the default deployment option in most low-power IoT-centric
software platforms and it is the common denominator in existing
performance evaluations [17, 25, 26, 35, 36]. Second, IEEE 802.15.4
exhibits different link layer properties compared to multi-hop BLE.
It deploys a CSMA/CAmedia access (instead of time-slotted channel
hopping) and a lower data rate 250kbps (instead of 1Mbps). To
implement a fair comparison, we benefit from the abstraction layers
of our implementation. These enable us run the same benchmark
application from our BLE experiments on a set of 15 m3 nodes,
which support IEEE 802.15.4 instead of BLE.

Figure 10 illustrates typical results in terms of reliability and
latency of CoAP packets using BLE and IEEE 802.15.4. In the tree
topology with moderate traffic, the IEEE 802.15.4-based network is
operating on capacity limits, leading to a PDR of 83.3% on average.
The BLE network shows a PDR above 99% in the same scenario,
with packet losses only appearing due to BLE connection losses.
The packet delays of BLE are mainly defined by the connection
interval in use, which influences the packet delay of each hop. Each
time a packet is retransmitted on the link layer, a full connection
interval is added to the latency of the packet delivery. The delay of
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(b) Round trip times of CoAP messages.

Figure 10: Comparison of BLE and IEEE 802.15.4, using the same tree topology and 1s ±0.5s sending interval.

the IEEE 802.15.4 network, however, is mainly influenced by the
backoff timers of the radio, which have significantly smaller values
than the connection intervals used for BLE, resulting in shorter
transmission delays when packets are delivered. In contrast to BLE,
however, packets are dropped after a defined number of retries
leading to a higher packet loss in IEEE 802.15.4 (see Figure 10(b)).

5.4 Energy Efficiency
To better understand whether battery-driven BLEmulti-hop routers
are a feasible deployment option, we measure the average current
consumption for a single node in different connection states and
scenarios for a nrf52dk board using the Nordic Power Profiler Kit.2

For each single connection event we measured a used charge
of 2.3𝜇C on the coordinator node, and a charge of 2.6𝜇C on the
subordinate node. Considering, for example, a connection interval
of 75ms, a single idle connection adds 30.7𝜇A or 34,7𝜇A to a node’s
average current consumption, depending on the node’s role.

In our medium traffic load scenario (i.e., producer interval of
1s ±0.5s, connection interval 75ms), a subordinate that acts as for-
warder with three active connections shows an additional current
consumption of 123𝜇A caused by the BLE connections. Adding
this additional current consumption to the board’s average idle
current consumption of 15𝜇A does allow to run this configuration
for 69 days on a 230mAh coin cell battery or little over 2 years on a
2500mAh 18650 cell. This shows that battery-powered IP routers
are a feasible option.

To highlight the usability of multi-hop BLE in battery-driven
scenarios, we compare the energy consumption of IP over BLE
nodes with plain connection-less BLE beacons. For a BLE node con-
figured as beacon sending the maximal usable payload of 31bytes
and configuring an advertising interval of 1s, we measure an in-
creased current consumption of 12𝜇A compared to the node in
idle mode. When configuring the same node as an IP over BLE
coordinator with a single open connection and letting the node
send a CoAP packet with the same payload every 1s, the average
current consumption increases by 16𝜇A. This shows that—despite a
considerable overhead in software complexity and CPU processing
time—IP over BLE nodes can compete with plain BLE beacons in
terms of energy while at the same time offering more network
features and reliability.

2https://www.nordicsemi.com/Software-and-tools/Development-Tools/Power-
Profiler-Kit

5.5 Implementation vs. Protocol Impact
All experiments are based on the BLE platform introduced in this
paper. To the best of our knowledge, there is no other open or closed
source implementation that supports multi-hop IP over BLE. This
prevents us from running comparative experiments. We want to
emphasize, though, that the observed basic performance character-
istics are specific to the BLE protocol design and independent of
implementation details. Other implementations could use different
buffer sizes and thread priorities. In case of high network load,
when broken connections are more likely, increased buffer sizes
could temporarily mitigate losses and different thread priorities
could shift the load between BLE stack and IP stack buffers. Those
specifics do not change our observations that connections drop
randomly. We will detail the fundamental reasons behind in the
next section.

6 HIDDEN IMPACT OF BLE CONNECTION
INTERVAL

6.1 Connection Shading
In § 5, we identified two characteristic properties in multi-hop IP
over BLE networks that challenge reliability: (i) random connec-
tion drops and (ii) spontaneous bandwidth reduction on links. Both
can be explained by a phenomenon we coin connection shading.
Connection shading occurs on nodes that have multiple active con-
nections, of which they are in the subordinate role for at least one
of them. As described in § 2, the link capacity of a single connection
depends on the maximum length of its connection events, which is
restricted by the positioning of these connection events relative to
the connection events of the node’s other connections in time. In
an ideal world, this effect would statically define the capacity for
each connection when a connection is opened. In practice, the con-
nection intervals are subject to clock drifts, which leads to distorted
intervals and changing capacities.

The Bluetooth standard mitigates the effects of clock drift with
respect to a single connection by defining quality gates for the used
clocks and by applying a measure called window widening on con-
nection subordinates. This measure tells a connection subordinate
to start listening for an incoming packet a defined amount of time
before it considers the next connection event to start and keeps
listening for the same time span after the connection event should
have happened. It ensures that the subordinate is always receiv-
ing packets from the coordinator despite the nodes clocks drifting
apart over time. On the downside, window widening may lead

https://www.nordicsemi.com/Software-and-tools/Development-Tools/Power-Profiler-Kit
https://www.nordicsemi.com/Software-and-tools/Development-Tools/Power-Profiler-Kit
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Figure 11: Radio allocation on a subordinate node with two BLE connections. Both connections are subject to clock drift leading
to connection shading due to radio scheduling collisions.

to negative effects in scenarios in which a subordinate maintains
connections to multiple controllers. It is worth recalling that the
starting point of each connection event is determined solely by a
connection coordinator, and hence it is subject to the coordinator’s
clock drift only. When a node maintains multiple connections and
the node is the coordinator for all of them, the connection intervals
for all these connections will deviate by the same amount as they
are subject to the same clock drift (Figure 11). If a node maintains
multiple connections and at least one of them is coordinated by
another node, the connection intervals are subject to different clock
drifts. Subsequently, this leads to connection events of the separate
connections that move relatively to each other in time.

For example, we consider a node that maintains two connections
𝐴 and 𝐵 with a connection interval of 100ms. This node is coor-
dinator for connection 𝐴, and the subordinate for connection 𝐵.
As starting point we consider the ideal situation where the initial
connection event for connection 𝐵 is scheduled to be 50ms after
the first connection event of connection 𝐴. In this situation, both
connections can utilize exactly half of the available link capacity.
Unfortunately, as described above, both connections 𝐴 and 𝐵 are
subject to different clock drifts, leading their connection events
shifting relatively to each other in time. If we consider a typical
relative clock drift for 𝐴 and 𝐵 of 36ms per hour, after 1h the con-
nection events will have shifted in a way that connection events
of 𝐵 are scheduled 86ms after the events of 𝐴. Now, the theoretical
link capacity is split into 86% and 14% for 𝐴 and 𝐵, respectively.
Connection 𝐵 therefore experiences a continuous degradation of
link capacity. After some more time the clock drift leads to the
situation where the connection events for both connections start
to overlap. The radio can only service one connection event at a
time, though, so the controller is left with two choices: (i) it can
decide to only schedule one of the two connections and skip all
connection events for the other connection, or (ii) it can schedule
both connection events in an alternating fashion. To be reliable
choice (i) implies that there are no packets to exchange for a certain
duration of time via the unscheduled connection. If that amount
of time is larger than the connection’s supervision timeout, both
peers declare the connection as dead and drop it. This is the reason
for the random connection losses we observe in § 5. Using choice
(ii), packets are transferred only at every second connection event,
leading to increased transmission delays and a sudden drop in link
capacity.

To illustrate the example above, Figure 12 shows link degrada-
tion for a single node based on our experiment that configured
all connection intervals of 75ms. The node under investigation
maintains a connection to the consumer node and attains the role
of the coordinator. The consumer node maintains a total of three
connections as subordinate. After an experiment runtime of 3100s
the link layer packet delivery rate for the observed link starts to
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Figure 12: Example for link degradation in a tree topology.
During the 1h experiment the upstream link of nrf52dk-1 is
subject to connection shading, leading to a drop of link layer
and CoAP PDRs.

drop significantly until only ≈ 50% of the link layer packets are
transferred. From the perspective of the application layer, the CoAP
PDR drops as depicted from 100% to 94% for the producer using
this link as upstream route, but as expected also for the produc-
ers having this link on their path to the consumer node. The PDR
per channel shows clearly that the reliability decreases evenly on
all data channels with the appearance of this event, which is as
expected when the subordinate of link starts to skip connection
events.

6.2 How Likely is Connection Shading?
Two conditions must be fulfilled such that connection shading
occurs. (i) a node must maintain at least two parallel connections
with the same connection interval and (ii) the node must be the
connection subordinate for at least one of those connections. Then,
the probability of two connections shading each other depends
on the configured connection interval and the relative clock drift
of the two clocks controlling the connection events. The clock
responsible for scheduling the beginning of a connection event
is called the sleep clock by the Bluetooth standard. For this clock
the standard demands a clock accuracy less than 250ppm. In the
worst case, this can lead to a relative clock drift of 500𝜇s per second.
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In practice, when measuring the relative clock drift between five
different nrf52dk boards, we encountered a maximum relative clock
drift 6𝜇s per second.

Assuming that the clock drift is constant over a given period of
time, the maximum time it takes until the connection events of two
connections will overlap can be computed as 𝐶𝑜𝑛𝑛𝐼𝑡𝑣𝑙/𝐶𝑙𝑘𝐷𝑟𝑖 𝑓 𝑡
with𝐶𝑜𝑛𝑛𝐼𝑡𝑣𝑙 being the BLE connection interval and𝐶𝑙𝑘𝐷𝑟𝑖 𝑓 𝑡 the
relative clock drift of the two clocks timing each connection. In
the worst case, considering the least allowed connection interval of
7.5ms and a relative clock drift of 500𝜇s per second, this leads to two
connections shading each other every 15s, and thus leading to 240
shading situations per hour. To put this into perspective: a typical
scenario using a connection interval of 75ms and experiencing a
relative clock drift of 5𝜇s per second, two connections will shade
each other every 4.17h, resulting in 0.24 shading events per hour.
Although this value is significantly lower than the worst case, it still
means that in a deployment with multiple active BLE connections,
there will be many shading events per day, each leading to link
degradation and possible connection losses.

The tree topology used in this work is composed of 14 BLE
connections. If we apply the probability of 0.24 shading events per
hour to these 14 links, we should see an average of 3.4 shading
events per hour or 80.6 events per 24h. The results for the 24h
experiment with a static connection interval of 75ms presented
in Figure 13(a) show that the nodes experience an overall of 95
connection losses during the experiment runtime. Considering that
we do not have exact information about the specific relative clock
drift for each pair of nodes, the estimated probabilities seem to be
valid.

6.3 Mitigation of Connection Shading:
Randomize BLE Connection Intervals

To prevent connection shading, the network needs to ensure that
any two connections at any node do not use the same connection
interval. In practice, this is challenging to achieve because the coor-
dinator, who is initiating a new connection, dictates the connection
interval that is going to be used. The coordinator, however, has
neither knowledge about the existence nor the used intervals of any
connection the subordinate peer maintains—note, the Bluetooth
standard does not offer any means to gather that information from
its peer.
Design space. Choosing a non-colliding connection interval is
guessing for the coordinator. After the connection was established,
the Bluetooth standard allows peers to update the used connection
parameters and with those the connection interval for active con-
nections. In cases where connection intervals on a subordinate node
would collide, that node could in theory use this update mechanism
to set the connection interval to a non-colliding value. As of Blue-
tooth 4.2, this mechanism has the drawback that it works without
negotiation, which gives the peer no option to decline the new set
of parameters. This might lead to ongoing link reconfigurations,
where nodes constantly change connection intervals to values that
collide at their peer nodes. Bluetooth 5.0, on the other hand, in-
troduces a new mechanism to update the connection parameters,
which allows for actual parameter negotiation between both peers.
In theory that could be used to find a connection interval value
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(c) Distributions of round trip times of CoAP messages.

Figure 13: Comparing the impact of fixed (standard
BLE mesh) and randomized (our proposal) BLE connection
intervals in tree and line topologies in 24h experiments.

that fits both. However, the response packet for such an update
request is crafted and filled by the BLE controller and it is up to
a controller implementation to prevent connection intervals to be
used multiple times. The problem is that the majority of the BLE
controllers are black boxes allowing interaction only through the
defined HCI interface. This interface does not allow to influence the
update mechanismmentioned above, hence, the controller behavior
cannot externally be influenced in this regard.
Proposal.We propose to randomize connection intervals in a given
window when opening new connections, to prevent the use of the
same connection intervals on a node. The coordinator of the new
connection randomly selects the connection interval from a prede-
fined window that is chosen around the target connection interval,
e.g., for a 75ms target interval the window could be from 65ms
to 85ms. The specific window should be chosen small enough, so
that a link’s performance characteristics (e.g. packet delay) behave
close to the target value, and large enough to allow for a sufficient
spacing of connection intervals. The minimum window size must
be larger than a node’s maximum number of connections multiplied
by the minimum spacing between connection intervals. There is
no upper bound on the window size but choosing the window size
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Figure 14: Distribution of BLE connection losses for 1s pro-
ducer interval using different BLE connection intervals. Each
configuration ran for 5×1h.

too large will have a randomizing effect on link performance, as
the minimum possible value from the window will behave signifi-
cantly different than the maximum possible value (see Figure 8(a)).
The variation of connection intervals leads to connection events of
different connections moving relative to each other in time with
an offset much larger then the one introduced by the clock drift.
This does not prevent single connection events to collide with each
other, but it does prevent connection shading. It is worth noting
that our proposal is standard compliant and does not depend on
the capabilities of a BLE controller or a BLE stack.
Implementation. To verify our proposal we implemented this
randomization in the statconn connection manager (see § 3). For
comparison reasons with a network that does not introduce col-
liding connection intervals, we further enhanced the connection
interval selection in two aspects. First, each time a coordinator gen-
erates a new connection interval to be used for a new connection,
that interval is compared to a list of already used intervals and
regenerated until it is unique for that node. Second, on each newly
opened connection the subordinate compares the connection inter-
val with the intervals of all its other connections. If the interval of
the connection collides, the subordinate closes the new connection
immediately. This forces the coordinator, triggered by the used
statconn connection manager, to reopen the connection with a new
randomly generated connection interval. This is repeated until the
connection interval for each of a node’s connections is unique.
Evaluation. The impact of the randomization strategy is notable.
In all experiments, we do not observe BLE connection loss related
to connection shading. Furthermore, the spacing of connection in-
tervals balances link capacities. Figure 14 illustrates the distribution
of connection losses for multiple 1h experiment runs for different
configurations of producer and BLE connection intervals. The ex-
periments using randomized connection intervals (highlighted in
gray) did largely not suffer from BLE connection losses. When we
encounter BLE connection losses in this configuration, this was for
a combination of small BLE connection intervals and high network
load. The raw data of the experiments in question does suggest that
these connection drops are caused by external interferences and
not by connection shading.

As a more detailed example for the positive impact of this ap-
proach, Figure 13 illustrates the changes in reliability and latency
comparing a fixed and random BLE connection interval in a star and
a tree topology. Both configurations were deployed for 24h using a
producer interval of 1s ±0.5. Figure 13(a) shows the differences of

CoAP packet delivery rates. While the network configuration with
a static connection interval of 75ms is experiencing a number of
connection losses and with these a certain degree of packet loss, the
configuration using random connection intervals between 65ms
and 85ms does not encounter any connection losses—out of over
1,200,000 CoAP requests sent in both topologies not a single CoAP
packet was lost. Using randomized connection intervals decreases
the overall link layer packet delivery rates slightly from 98% to 96%
in the tree and 99% to 98% in the star topology. This decrease is a
trade-off with respect to a stable link behavior that does not suffer
from temporal link degradations (see Figure 13(b)). Comparing the
round trip times in Figure 13(c), the results show that randomizing
the connection interval leads to slightly increased delays in the tree
topology due to the increase in link layer retransmissions. At the
same time randomizing connection intervals show a lower upper
bound on round trip times for the slowest 1% of packets, leading to
a more deterministic timing behavior in the network. In the line
topology, the delays are slightly lower while we observe the same
positive characteristics of the worst case round trip times.

7 RELATEDWORK
In parallel to the IP over BLE standardization defined in the IETF,
the Bluetooth Special SIG presented Bluetooth Mesh [9] as an al-
ternative approach of implementing multi-hop topologies based
on BLE. Darroudi et al. [14] show that this proposal applies a very
different approach on mesh networking. One major drawback is
that Bluetooth Mesh does not support transport of IP data and thus
cannot be transparently integrated into the Internet.

The first real-world analysis of 6BLEMesh running 6BLEMesh on
low-power nodes in a multi-hop environment was published by
Darroudi and Gomez [13]. They show the impact of BLE connection
parameters on transmission delays and power consumption. The
experiments are, however, limited to a setup of 3 nodes and 2 hops.
Spörk et al. [40] present similar results using comparable hardware
but focus on single-hop scenarios only. Recent work focuses on
the optimization of BLE links between two nodes [39, 41]. Com-
bining adaptive frequency hopping (AFH) with careful exclusion of
channels can mitigate the effects of interference on the crowded
2.4GHz frequency spectrum, reducing packet loss and significantly
improving link delays. Although the suggested improvements are
not applied in this work, these findings suggest that large scale
6BLEMesh applications would also benefit. Further work describing
experiments to analyze the performance properties of IP over BLE
is not focusing on low-power platforms [11, 27, 29].

Other experiments and simulations measure the raw throughput
of BLE links [6, 15, 19, 21]. All studies conclude that the maximum
data rate is capped at roughly 220 kbps. Those studies, however,
are based on older Bluetooth standards and do not take the data
length extension and the 2Mbps modes into account. More recent
work [10] shows that current versions of BLE can achieve data rates
of up to 1300kbps.

Siekkinen et al. [38] show that BLE can achieve significant lower
energy consumption per bit transmitted compared to IEEE 802.15.4,
which is confirmed in [13, 29, 40]. Based on simulations, Feeney et
al. [16] find that the phase difference between co-located, beacon-
enabled IEEE 802.15.4 networks combined with clock drift create
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Table 2: Open source IP over BLE (IoB) implementations.

=supported =not supported

Implementation Hardware portability GATT Service IoB single-hop IoB multi-hop

RIOT + NimBLE [3]
BLEach [2, 13, 40]
Zephyr [4]

tempoaral disconnections and packet losses. Although observed in a
different context, the effects are similar to connection shading intro-
duced in this work. The impact of a contention-based IEEE 802.15.4
link layer on application protocols such as CoAP was analyzed in
detail by Gündogan et al. [26].

There are only two other open source implementations available
supporting IP over BLE, BLEach based on Contiki [2, 13, 40] and
Zephyr [4] (see Table 2). BLEach only provides a subset of BLE
features needed for IP over BLE. It does not include GATT server
support and therefore does not comply with the Internet Service
Support Profile. It is also limited to a small set of hardware platforms.
Zephyr features both a full featured BLE and and a 6LoWPAN stack,
supporting a wide range of BLE-enabled hardware. Currently both
implementations do not support multi-hop IP over BLE, the code
used in [13] is not publicly available. An additional reason for
providing a new platform is that we also believe that diversity helps
to build a reliable IoT ecosystem.

8 DISCUSSION
In this section, we discuss our main findings guided by the question:
what is still missing to successfully adapt IP over BLE in the IoT?
Software support. A successful adoption of IP over BLE in the
IoT requires wide software support. A major reason for the lack of
BLE-6LoWPAN networking is implementation complexity because
two complex software modules are needed, a BLE stack and an
IPv6 stack. The software platform presented in this work is simple
to use and portable, and demonstrates that an established open
source Bluetooth stack can be utilized to add BLE capabilities to an
existing 6LoWPAN stack if carefully modeled.

Although the NimBLE BLE stack is well established and tested,
we found a number of problems in its code base, which caused
stability and performance issues. The main reason for these issues
to be unnoticed is that the L2CAP connection oriented channels are
rarely used in current BLE use cases. The majority of bugs that we
encountered were concurrency issues in NimBLE’s L2CAP imple-
mentation leading to corrupt states and runtime failures. We were
able to expose most of the issues due to the multi-threaded architec-
ture of the RIOT network stack, which challenges the thread-safety
of software modules. We contributed fixes to NimBLE.

Our BLE implementation shows that multi-hop IP over BLE is
a viable solution on top of a multi-purpose operating system for
resource constrained IoT devices. Memory requirements of the
configuration used in our evaluation (i.e., 140kB of ROM and 58kB
of RAM) are on par with modern BLE-capable SoCs. This is an upper
bound because our setup contains extensive logging capabilities.
To the best of our knowledge, the two dominant platforms for more
powerful mobiles, iOS and Android, however, do not support IP over
BLE functionality, yet. Their BLE stacks do not expose L2CAP APIs
either. We hope that the results of this paper motivate additional

activities since broad support will enable more comprehensive IoT
scenarios in the future.
Connection intervals should be unique. In multi-hop BLE, a
large portion of link layer packet losses can be attributed to local
scheduling collisions of the radio on nodes maintaining multiple
open connections. A connection interval that is the same for multi-
ple connections combined with common clock drifts on IoT devices
result into connection shading, i.e., connection events start to over-
lap. We showed that randomizing connection intervals on all nodes
(and guaranteeing different intervals for all connections per node)
solves this issue without introducing additional resource require-
ments. In general, connection shading is not unique to BLE and can
be observed in other time-slotted networks, but due to BLEs strict
timing requirements connection shading effects are particularly
visible in multi-hop BLE networks.
Carefully choose the connection interval length. From an
energy consumption perspective, larger connection intervals are
beneficial. The increase of connection intervals, however, leads
to an increase of buffer space since outgoing packets need to be
queued for transfer until the next connection event starts. Once the
buffer space is exceeded, the network reliability declines and packet
delays increase significantly. We observed this behavior even in
scenarios with a medium network load. Therefore, the length of
the connection interval should be configured based on the BLE and
IP packet buffer sizes available.

Further care has to be taken when stateful protocols such as
CoAP or TCP run on top. Connection intervals in the order of
seconds usually conflict with default retransmission timeouts of
those protocols. Eventually, this can cause a significant increase in
network load due to network layer retransmissions, although the
original requests were never lost and are delivered successfully.

9 CONCLUSION
BLE is considered a promising deployment option for low-power
IoT scenarios as it offers popular network access available in the
mass market. To unfold full potential in future mesh scenarios,
multi-hop IP over BLE is needed, though. In this paper, we shed
light on the performance of multi-hop IP over BLE from the per-
spective of constrained devices in realistic IoT scenarios. Based on
our software platform, we found that packet delivery and delay
can be easily downgraded in mid-sized networks. We proposed
a mitigation strategy that is standard compliant and copes with
local system peculiarities of IoT devices such as clock-drift and
constrained memory. Using a random connection interval of mod-
erate length allowed us to deploy a fully reliable network access
without sacrificing energy or round trip times. In the future, we
plan to expand the scope to include mobile systems. In particular
we identified the management of BLE topologies, the coupling of
BLE topologies with IP routing, and the adaptability of IP over
BLE networks to dynamic environments and mobile nodes as open
research questions.
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A ARTIFACTS
This section provides an overview of the artifacts produced for and
used in this paper. The artifacts include software that implements
our proposed solution, to run the experiments, and to analyze
gathered data, as well as the raw data analyzed in this paper. Using
the artifacts, you should be able to reproduce the results on real
hardware in the FIT IoTlab testbed.

All conducted experiments are based on the open source IP over
BLE platform presented in the paper (see § 3 and § A.2). The exper-
iments are automated using a custom experimentation framework
based on static configuration files that specify the details for each
experiment run (see § 4 and § A.3). In addition to the experiment
descriptions we made all raw data used in the paper available (see
§ 5, § 6, and § A.4).

A.1 Hosting
All artifacts (i.e., software, raw data, and detailed documentation)
are available through the following sources:

https://zenodo.org/record/5635607
https://github.com/ilabrg/artifacts-conext21-ble

If you want to reproduce our results, we recommend to follow the
README.md in this repository.

The archived version on https://zenodo.org/ should provide pub-
lic access for more than 10 years. Providing both the GitHub reposi-
tory and the Zenodo archive in the paper allows us to maintain the
archive and to have a citable version that reflects the state when
the artifacts were granted.

A.2 IP over BLE Platform
The open source IP over BLE platform presented in our paper is
published as part of the RIOT [3, 8] and NimBLE [1] open source
projects. The full platform is part of the current releases of each
project, RIOT 2021.07 and NimBLE 1.4.0, respectively.

Additional bug fixes regarding the IP over BLE platform have
been introduced after these releases. Because of this, the current
experimentation framework is based on the current development
branches, namely 0386aea for RIOT and 7d3f3cc for NimBLE.

The GNRC adaption code is placed in the RIOT code tree under
pkg/nimble/netif. The source code of the statconn connection
manager implementation is located in the RIOT source tree under
pkg/nimble/statconn.

A.3 Experimentation Framework
All experiments described and analyzed in our paper were con-
ducted using a custom experimentation framework that consists of
a YML-based description format as well as tooling for running and
analyzing experiments in an automated fashion.

Each experiment is fully described in form of a static experiment
description file. These descriptions contain the hardware nodes
used, a mapping of firmware configuration onto these nodes, the
runtime node configuration as well as the command sequence to
be run during the experiment. This static experiment description
ensures repeatability.

For each experiment the framework produces three types of
artifacts: (i) the static experiment description, (ii) a single log file
representing the experiment’s raw results data, and (iii) the inter-
mediate results in form of plots and the preprocessed data those
plots are created from.

The README.md in the main folder of the repository contains all
information and step-by-step instructions to reproduce our experi-
ments.

A.4 Experimentation Results
The raw data for each analysis performed in the paper is avail-
able via Zenodo instance at https://zenodo.org/record/5635607. The
logs.tar.gz archive contains the raw log files of each experiment
run. For convenience we also included the intermediate results as
created by our analysis tooling in the plots.tar.gz archive. These
intermediate results can also be created by running the analysis tool
included in our experimentation framework repository as described
in § A.3.

B SUMMARY OF EXPERIMENT RESULTS
Figure 15 illustrates the aggregated results of running 60 different
experiment configurations, each for 5×1 hour.

https://zenodo.org/record/5635607
https://github.com/ilabrg/artifacts-conext21-ble
https://github.com/ilabrg/artifacts-conext21-ble
https://zenodo.org/
https://github.com/ilabrg/artifacts-conext21-ble
https://zenodo.org/record/5635607
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Figure 15: Aggregated results for 60 different experiment configurations. Each configuration ran for 5×1h.
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