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ABSTRACT This paper evaluates four forwarding strategies for fragmented datagrams in the Internet of
Things (IoT). We focus on classic end-to-end fragmentation, hop-wise reassembly, a minimal approach to
direct forwarding of fragments, and direct forwarding utilizing selective fragment recovery. To fully analyze
the potentials of selective fragment recovery, we include four common congestion control mechanisms.
We compare all fragmentation strategies comprehensively in extensive experiments to assess reliability, end-
to-end latency, and memory consumption on top of IEEE 802.15.4 and its common CSMA/CAMAC imple-
mentation. Our key findings include three takeaways. First, direct fragment forwarding should be deployed
with care since higher packet transmission rates on the link layer can significantly reduce reliability, which
can even further increase end-to-end latency because of highly increased link layer retransmissions. Second,
selective fragment recovery can mitigate the problems underneath. Third, congestion control for selective
fragment recovery should be chosen such that small congestion windows grow together with fragment
pacing. In case of fewer fragments per datagram, pacing is less of a concern but the congestion window
is limited by an upper bound.

INDEX TERMS Embedded networks, Internet of Things (IoT), IP networks, fragmentation, multihop
wireless mesh networks.

I. INTRODUCTION
The advent of the Internet of Things (IoT) increased deploy-
ment of resource constrained, heterogeneous, and wire-
less devices that join the wider Internet. This change also
increased the deployment of heterogeneous access networks,
which introduce a variety of maximum packet sizes on the
link layer, many of them below 250 bytes, see Figure 1.
On the network layer, however, nodes predominantly speak
IPv6 [6] using a mandatory transparent Maximum Transmis-
sion Unit (MTU) size of at least 1280 bytes. Since header
compression cannot fully mitigate this problem, fragmenta-
tion on the lower layer is necessary to support communication
based on IoT link layer technologies.

One of the most popular IoT link layer technologies,
IEEE 802.15.4 [1], only allows for the transmission of a very
limited number of bytes. For efficiency reasons, information
required to forward a packet cannot be encoded in every
fragment but is only present in the first fragment, based
on the IPv6 adaptation layer 6LoWPAN [7]. There are two
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concepts for forwarding fragmented datagrams in 6LoW-
PAN. First, reassembly is performed at every hop (hop-wise
reassembly), followed by re-fragmentation when forwarded
on another constrained link (see Figure 2b). As the forward-
ing information is only being stored in the first fragment
this is the simplest solution. Second, individual fragments
are forwarded (fragment forwarding) by recording the for-
warding information required from the first fragment on
all participating nodes. This recorded information then can
be used to forward all subsequent fragments to the next
hop [8, Section 2.5.2], [9] (see Figure 2c). Since losing a
single fragment requires resending of the whole datagram
on an upper layer, fragment forwarding can be extended by
selective fragment recovery that allows the reassembling end-
point to cumulatively acknowledge received fragments to the
fragmenting end-point (see Figure 2d). Due to the higher
traffic load by forwarding fragments directly, selective frag-
ment recovery also provides the basis to deploy congestion
control.

Fragmentation enables packet delivery because it splits
packets to comply with the maximum sized datagram that can
be transmitted on a link. Choosing the right fragmentation

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 143969

https://orcid.org/0000-0001-7378-1045
https://orcid.org/0000-0002-0956-7885
https://orcid.org/0000-0002-3825-2807
https://orcid.org/0000-0001-7441-604X


M. S. Lenders et al.: Fragment Forwarding in Lossy Networks

FIGURE 1. Common IoT link layer technologies deployed in typical IoT
scenarios and their maximum Service Data Units. Link layer technologies
include LoRaWAN, SigFox, and NB-IoT representing low-power wide-area
networks, Bluetooth Low-Energy and IEEE 802.15.4 for low-power
personal-area networks, and ITU-T G.9903 (power-line communication)
for local-area networks.

strategy is intricate since the strategy affects packet delivery
ratio, latency, and system resources. In this paper, we compar-
atively assess the performance and resource consumption of
hop-wise reassembly, direct fragment forwarding, and selec-
tive fragment recovery over the very thin IEEE 802.15.4MAC
layer. As a point of reference, we include end-to-end frag-
mentation as well. As part of this work, we also provide
an independent implementation of both simple fragment for-
warding and its selective fragment recovery variant, whichwe
showcase to allow deeper insights into our evaluation results.

To evaluate which improvements an optional congestion
control could offer to cope with fragment retransmissions in
lossy networks, we compare four common congestion control
mechanisms in selective fragment recovery on the sameMAC
layer: (i) A simple mechanism as proposed in the appendices
of RFC 8931, (ii) a TCP-Reno-like approach that only takes
loss into account for congestion control, (iii) a TCP-Reno-
like approach with Alternative Exponential Backoff (ABE)
that introduces special behavior for Explicit Congestion Noti-
fication (ECN), and finally (iv) a QUIC-like approach that
adds packet pacing on top of that. To evaluate the differ-
ent approaches we developed CongURE, a framework for
Congestion Control Utilzing Reusable Elements. CongURE
allows for drop-in replacements of the congestion control
mechanism in a protocol.

Our findings reveal the drawbacks of using the widely
deployed very thin MAC layer below 6LoWPAN fragment
forwarding. While hop-wise reassembly manages to transmit
at least a fraction of the data, even with a higher number

TABLE 1. Abbreviations used throughout this paper.

of fragments, direct fragment forwarding techniques quickly
drop to 0% performance. Selective fragment recovery helps
to mitigate those drawbacks, but only when it comes to packet
delivery ratio and with low window sizes. Classic congestion
control mechanisms based on Additive Increase, Multiplica-
tive Decrease (AIMD), slow start, congestion avoidance, and
recovery help to find a balance between latency and high
packet delivery ratio with SFR over the very thin MAC layer
when combined with RTT-based pacing.

In summary, our work on a comprehensive picture on
fragment forwarding in lossy networks makes the following
contributions:

1) Comparative evaluation of four fragment forward-
ing approaches (end-to-end fragmentation, hop-wise
reassembly, direct fragment forwarding, and selective
fragment recovery) on top of a very thin MAC layer.

2) The analysis of congestion control in the context of
selective fragment recovery. To this end, we design the
integration of three common congestion control mech-
anisms (TCP Reno, TCP ABE, and QUIC congestion
control) in SFR, and implement these mechanisms.

3) Comparative evaluation of congestion control mecha-
nisms in SFR on top of a very thin MAC layer.

4) CongURE, a lightweight congestion control framework
for low-end IoT devices, which allows for the drop-in
replacement of congestion control mechanisms inde-
pendently of a specific protocol.

The remainder of this paper is structured as follows.
In Section II, we provide background on 6LoWPAN frag-
mentation and forwarding as well as congestion control
options for SFR. In Section III, we outline our implemen-
tations of the different fragment forwarding options and
the CongURE framework. We present the results of our
experiments on fragment forwarding and congestion control
in Section IV and Section V, respectively. In Section VI,
we summarize related work. We discuss our overall findings
in Section VII, and close with a conclusion and an outlook in
Section VIII. Table 1 summarizes the key abbreviations used
throughout this paper.
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FIGURE 2. The four approaches for fragment forwarding in low-power and lossy networks compared in this paper.

II. BACKGROUND AND PROBLEM STATEMENT
The IETF specified the 6LoWPAN protocol [7] to allow
for transmissions of IPv6 packets over IEEE 802.15.4 [1]
networks, a widely used link layer technology in the IoT.
While IPv6 requires a Maximum Transmission Unit (MTU)
of at least 1280 bytes [6], IEEE 802.15.4 is only able to
handle link layer frames of up to 127 bytes—including the
link layer header. Enabling link layer security, this leaves
81 bytes for the network layer [10]. Considering 48 bytes for
the IPv6 and UDP headers, this leaves only 33 bytes for appli-
cation data per frame. To enable IPv6 communication in such
a restrictive environment, 6LoWPAN provides both header
compression [11], [12] and datagram fragmentation [7].

Header compression is applied to a datagram before it
is sent, even before it is fragmented. Two types of header
compression are supported: (i) the classic approach of field
elision based on a bit mask as specified in RFC 6282 [11] and
(ii) Generic Header Compression as described in RFC
7400 [12] based on LZ77-style compression [13]. Option (i) is
expected to be supported by all 6LoWPAN nodes.
Option (ii) is not widely deployed yet and requires an
exchange of capabilities between nodes. The impact of both
compression schemes on performance is less compared to
fragmentation: Header compression aims to add a slight pro-
cessing overhead to reduce the need for fragmentation while
fragmentation introduces performance issues for each single
fragment a datagram is separated into. To better understand
performance challenges with larger impact, fragmentation is
the focus of this paper.

It is worth noting that the concept of 6LoWPAN (or more
generally 6Lo) is not limited to IEEE 802.15.4 but can also be
used in other link layer technologies such as PLC [2] or Blue-
tooth Low Energy [3] (see Figure 1). There is also Static Con-
text Header Compression and Fragmentation (SCHC) [14]
for even more restrictive link layer technologies such
as LoRaWAN [15], SigFox [16], and NB-IoT [17].

The fragmentation modes of SCHC, while incompatible to
the fragmentation approaches of 6LoWPAN, are based on the
same principles. As such, the same conclusions of this paper
apply, as we will discuss later in this paper.

A. 6LoWPAN HEADER COMPRESSION
In this paper, we will focus on fragmentation. To understand,
however, how fragmentation decisions are made and also why
packets cannot simply carry a compressed header in every
fragment, a basic understanding of header compression is
needed. We will discuss classic 6LoWPAN header compres-
sion [11] because this scheme is widely supported; in the
context of fragmentation, similar results apply to Generic
6LoWPAN header compression [12].

Classic 6LoWPAN header compression supports two
modes, IPv6 Header Compression (IPHC) (see Figure 3a)
and Next Header Compression (NHC) (see Figure 3b). Both
modes use the elision or replacement of fields and use lower
layer information and bit-fields signifying which fields are
elided or replaced.

IPHC is applied at every hop in a network. Both the 4-bit
version field and the 16-bit length field of the IPv6 header are
elided in any case. The version field is always set to the value
6 and is thus redundant, and the length field can be derived
from the lower layers (i.e., 6LoWPAN fragmentation headers
or the link layer). The 8-bit traffic class field and the 20-bit
flow label field of the IPv6 header can be elided: The TF flags
encode the information which of those fields or their sub-
fields are elided. Special values of the 8-bit hop limit field of
the IPv6 header mapped to the 2-bit HL field: 00 means the
hop-limit is carried inline, 01means the hop limit is implied to
be 1, 10 means the hop limit is implied to be 64, and 11means
the hop limit is implied to be 255. In all but the first case the
hop limit field is elided.

IPHC allows for both stateless and stateful address com-
pression of the 128-bit source and destination address fields
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FIGURE 3. Encodings for 6LoWPAN header compression. Compression encodings are marked in the corresponding color of the field
they compress.

FIGURE 4. 6LoWPAN fragmentation headers.

within the IPv6 header. The combination of SAC (source
address compression), SAM (source address mode),
M (multicast compression), DAC (destination address com-
pression), and DAM (destination address mode) flags reflect
the respective mode; alternatively, the address is carried fully
inline. Details are described in RFC 4944 [7]. In short, when
only considering unicast communication, stateless address
compression is used for link-local addresses (eliding the
fe80::/64 prefix) and stateful address compression can be
used for all other addresses. The prefix elided by stateful com-
pression is encoded for both source and destination address
based on an optional 4-bit context identifier (CID) extension.
If the identifiers for both source and destination address
are 0 or if both addresses use stateless address compression
that extension can be elided, signified by clearing the CID
flag in the IPHC encoding. How the CID-to-prefix mapping

is shared between the nodes is out of scope of the IPHC
specification [11]. One option is discussed in the Neighbor
Discovery optimization for 6LoWPAN [18].

The suffixes or interface identifiers (IIDs) of addresses can
be elided when they are based on a link layer address [7] and
if one of the nodes involved in the communication is the node
with that link layer address. There are no special signifier bits
for IID elision.

NHC supports IPv6 extension headers and UDP headers.
If NHC is used, the NH bit in the IPHC encoding is set.
Otherwise, the 8-bit next header field is carried inline and the
remaining headers are uncompressed.

IPv6 extension header compression allows for the removal
of padding within the extension headers and thus inter-
nal fragmentation of the headers by re-defining the length
field in units of bytes and not 8 bytes as specified in [6].
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FIGURE 5. IPv6 fragment extension header (M set = more fragments,
M unset = last fragment).

If an extension header exceeds the length of 255 and thus
overflows the 8-bit length field, NHC cannot be used for that
extension header. The type of extension header is signified
by the EID (Extension Header ID) flags in the encoding.
It also allows for encapsulated IPHC encodings and thus com-
pressed IPv6-in-IPv6 tunneling. The 8-bit next header field of
an extension header can also be elided, if the following header
is also compressed by NHC.

UDP header compression allows for the elision of the
checksum if and only if the upper layer provides other means
of integrity checks of the payload. If the checksum can
be elided, the C flag in the UDP compression header is
set to 1. Moreover, port compression is supplied for special
port ranges. These port ranges are encoded with the 2-bit P
flag field. For more details about those port range encodings,
we refer to [11].

B. WHY NOT IPv6 END-TO-END FRAGMENTATION (E2E)?
IPv6 fragmentation requires the lower layer to be able to
support a minimumMTU of 1280 bytes. Many IoT link layer
technologies, however, allow only for much smaller MTUs
(e.g., 127 bytes in IEEE 802.15.4 with and 400 bytes in ITU-T
G.9903). Carrying IPv6 source and destination addresses
already requires space for 32 bytes (2 × 128 bits) of data
when compression is not possible, see Section II-A. 32 bytes
are more than a fifth of the frame SDU of IEEE 802.15.4.
Because of that, IPv6 fragmentation alone is not suitable on
top of IoT link layer technologies. This justifies a solution
that contains the forwarding information only in the first
fragment.

IPv6 fragmentation also requires a 32-bit identifier to asso-
ciate fragments to a complete datagram end-to-end [6], see
Figure 5. A link-wise identifier of shorter length can help to
further save space in a constraint link layer frame.

Furthermore, some extension headers have to be car-
ried in every fragment [6] and the capabilities of next
header compression for extension headers is very limited,
see Section II-A.

As we will see in Sections II-C and II-D, other fragment
forwarding approaches require overhead in form of new
data structures to save space in the transmitted fragment.
To compare IPv6 end-to-end fragmentation with IoT-specific
fragmentation solutions, we will use a modified version of
IPv6 fragmentation that allows for such small fragments in
our analysis. We simply set the MTU of the interface so that a
compressed IPv6 fragment fits the link-layer PDU at all hops
in the network, and configure the network stack as such to
not use the 6LoWPAN module. We will call this approach

end-to-end fragmentation (E2E, see Figure 8a) in the remain-
der of this paper.

C. BASIC FRAGMENTATION AND REASSEMBLY
IN 6LoWPAN
In 6LoWPAN, datagram fragmentation implements the fol-
lowing common approach, similar to IPv6 fragmentation (see
Section II-B): Before sending a datagram to the underlying
link layer, the network layer checks whether the data exceeds
the maximum payload length (commonly referred to as SDU,
Service Data Unit) of the link layer. If the data size com-
plies with the SDU, a single datagram is sent without any
modification. If the data size does not comply with the SDU,
a datagram is divided into multiple fragments such that the
content of each fragment matches the SDU, see Figure 6.
Each fragment includes a fragment header containing infor-
mation to assemble the datagram [7]:

The fragmentation header of the first fragment contains
a 16-bit datagram tag to identify the fragment on the link
and an (uncompressed) datagram size in bytes as an 11-bit
number, see Figure 4a. The datagram size can be encoded as
a 11-bit number, because the MTU for IPv6 over 6LoWPAN
is capped at 1280 bits, which is less than 211− 1 = 2047 bits
but greater than 210 − 1 = 1024 bits. This way we can
keep the header as small as possible, i.e., the 5-bit dis-
patch to identify the header type, the 11-bit datagram length,
and the 16-bit datagram tag form a header of only 32 bits
(or 4 bytes). After the first fragment, all subsequent fragments
carry—in addition to the header fields of the first fragment
header—an offset to refer to this fragment in units of 8 bytes,
see Figure 4b. Consequently, all payloads in a fragment must
be of a length that is a multiple of 8.

The receiver identifies multiple fragments that belong to
the same datagram by comparing two values: the link layer
source addresses and the datagram tag. Then, the receiver
network stack stores all fragments of an incoming datagram in
the reassembly buffer for up to 10 seconds. In the following,
wewill refer to identifiers that map fragments to a datagramD
by (a, ga(D)) with a being the link layer source address
and ga(D) being the datagram tag for D on the link to a
(cf., Figure 4).

A brief back-of-the-envelope calculation shows that a node
needs to allocate at least 1291 bytes of memory per reassem-
bly buffer entry to reassemble a fragmented datagram.
In detail:
• At most 8 bytes, plus 1 byte to store link layer source
address and its length, since IEEE 802.15.4 supports two
addressing formats (64-bit EUI-64s and a 16-bit short
addresses),

• 2 bytes for the datagram tag, and
• 1280 bytes for the maximum expected size of an
IPv6 datagram.

1291 bytes are significant memory requirements on con-
strained devices, which typically offer memory within
the range of several kilobytes [19]. Especially in a mul-
tihop network—a common deployment scenario in the
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FIGURE 6. Fragmentation in 6LoWPAN.

IoT—it becomes challenging to provide enough resources
to store a sufficient number of reassembly buffer entries.
In Section III-A, we show how to save memory in a concrete
implementation.

It is worth noting that RFC 4944 [7] specifies four com-
ponents to identify all fragments that belong to a datagram
(e.g., the link layer destination address and the datagram
size). RFC 8930 [9], however, argues that only the link layer
source address and the datagram tag are necessary for such
an identification. As this paper compares classic hop-wise
reassembly based on RFC 4944 [7] with approaches defined
in RFCs 8930 [9] and 8931 [20], we decided to use the
reduced (a, ga(D)) identifier in all approaches.

D. HOP-WISE REASSEMBLY (HWR) VS. DIRECT
FRAGMENT FORWARDING (FF)
The destination address in the IPv6 header guides forwarding.
In 6LoWPAN fragmentation, however, the IPv6 header is
only present in the first fragment. To enable intermediate
nodes in a multihop network to forward fragments without
this context information, two solutions are proposed: hop-
wise reassembly and direct fragment forwarding.

The naive approach to handle fragmented datagrams in a
multihop network is hop-wise reassembly (HWR) [6], [7].
In HWR, each intermediate hop between source and
destination assembles and re-fragments the original datagram
completely. This leads to three drawbacks. First, each inter-
mediate hop needs to provide enough memory resources to
store all fragments in the reassembly buffer (see Figure 8b).
Second, the memory requirements are unbalanced between
nodes in the network. Considering highly connected nodes
(see node e in Figure 7), these nodes need to cope with
the reassembly load of all their downstream nodes. Third,
datagram delivery time is bound by the time needed to receive
all fragments of the datagram. Papadopoulos et al. [21] under-
scored these problems in more detail.
Fragment forwarding (FF) [9] tackles the drawbacks of

HWR by leveraging a virtual reassembly buffer (VRB) [22],
see Figure 8c. In contrast to a reassembly buffer, a VRB only
stores references to link the subsequent fragments to the first
fragment such that intermediate nodes can determine the next
hop. In detail, the VRB is applied as follows. Each entry
represents the source address and the incoming datagram tag
(a, ga(D)) (cf., Section II-C), the next hop link layer address b,

FIGURE 7. e represents a typical bottleneck when using HWR.

and the outgoing datagram tag gb(D):

(a, ga(D)) 7→ (b, gb(D))

This has two implications. First, an intermediate node can
ensure that datagram tags are unique between a node and
its neighbors. Second, all fragments belonging to the same
datagram will travel the same path.

E. SELECTIVE FRAGMENT RECOVERY (SFR)
In case of HWR or FF, losing fragments is costly when the
complete datagram needs to be retransmitted by an upper
layer. To that end, Selective Fragment Recovery (SFR) was
introduced to 6LoWPAN within the IETF [20]. SFR utilizes
the same mechanisms of FF but introduces new header for-
mats, the recoverable fragment (RFRAG) header and RFRAG
acknowledgment. SFR is thus a completely new protocol.
In addition to datagram tag and datagram offset, those headers
include a 5 bit sequence number, see Figure 4c, which allows
for lightweight cumulative acknowledgments (ACKs) based
on a 32 bit bitmap, see Figure 4d. Those acknowledgments
can be requested by the fragmenting endpoint using the X
flag in the RFRAG header. Using a configurable window
size for setting this flag and an Explicit Congestion Noti-
fication (ECN) flag E, optional congestion control can be
provided in SFR.

As SFR uses the source address and the datagram tag to
identify a datagram, a reverse lookup in the VRB by next hop
address and outgoing tag can be used to send ACKs to the
datagram source, see Figure 8d. Another crucial difference
to HWR and FF is that datagram size and offset share the
same field: while in the first fragment that field denotes the
size of the datagram, in all subsequent fragments it denotes
the offset. Therefore, the true size of a datagram can only be
known by the reassembling endpoint, when the first fragment
arrived.

To recover fragments, the fragmenting end-point triggers
a timeout—the Automatic Repeat Request (ARQ) timeout—
whenever it sends out a fragment marked with the ACK
request flag. If an ACK is not received within that timeout,
or a received ACK with the same datagram tag compared to
the ACK of the requesting fragment marks a previously sent
fragment as not received in its 32 bit bitmap, the fragment-
ing end-point may resend the fragment. If a pre-configured
number of resends fails, the fragmenting endpoint can either
try to resend the whole datagram a pre-configured number
of times or give up on sending the datagram. The maxi-
mum number of fragments in flight can be either configured
statically or adaptively controlled by an optional congestion

143974 VOLUME 9, 2021



M. S. Lenders et al.: Fragment Forwarding in Lossy Networks

FIGURE 8. The fragment forwarding approaches compared for a datagram D (a: source; b and c: intermediate hops; d : destination;
gn(D): datagram tag of D as generated by node n).

control mechanism. To further reduce congestion within the
network, RFC 8931 [20] specifies a configurable inter-frame
gap (IFG), which defines the time an SFR-capable node has
to wait between sending either fragments or ACKs.

F. CONGESTION CONTROL FOR 6LoWPAN
FRAGMENTATION
Since the acknowledgment mechanism in SFR is cumulative,
multiple fragments can be sent at once. Considering the
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resource restrictions of the constraint devices on path,
the number of fragments should be limited by a congestion
control (CC) mechanism, though. Moreover, as we will show,
the single-antenna radio used by such devices can itself be a
point of congestion in case fragments are directly forwarded.
To find a balance between not exhausting the resources
en-route and reducing latency penalties due to the waiting
for an ACK after a number of fragments have been sent,
CC should be an integral part of SFR.

SFR supports an Explicit Congestion Notification (ECN)
mechanism. RFC 8931, however, defines only that a reassem-
bling end-point that receives any RFRAG with the ECN flag
E set, must set the E flag in the ACK to acknowledge that
fragment as well (cf., Figures 4c and 4d). As the reasons
for a loss (congestion, interferences, etc.) are not clearly
distinguishable in LLNs, using ECN as part of CC is crucial.
Furthermore, in the appendices of RFC 8931 [20], some
considerations are made how CC can be provided in SFR,
but the specification also states that more experimentation is
needed. This paper contributes these experiments.

To analyze CC from different angles, we consider four CC
mechanisms specified by the IETF: (i) the base mechanism
described in the appendices of RFC 8931, (ii) TCP Reno
as described in RFC 5681 [23] to use the same mechanism
for CC mostly deployed in the wider Internet, (iii) an exten-
sion of the latter using an Alternative Exponential Backoff
(ABE) [24] and ECN to adapt the congestion window, and
(iv) the congestion control mechanism of QUIC [25] to ana-
lyze the impact of its adaptive pacing mechanism. It is worth
noting that the CC in 6LoWPAN fragmentation operates
per link and not end-to-end, which decouples CC from the
original source and final destination.

G. MAC LAYER
The MAC layer plays a crucial role in preventing
packet losses because it controls the medium access.
IEEE 802.15.4 provides support for a variety of MACmodes.
The base specification [1] only supports the non-beacon
enabled (NBE) mode and the beacon enabled (BE) mode.
IEEE 802.15.4e extends IEEE 802.15.4 by Time Slotted
Channel Hopping (TSCH) and the Deterministic and Syn-
chronous Multi-channel Extension (DSME) [26]. While for
BE, NBE, and TSCH specifications an IETF-compatible net-
work layer exists [7], [27], IPv6 over DSME is not specified.

Even though open source implementations for both
TSCH [28] and DSME [29] are available, operating sys-
tems such as Contiki, RIOT, or Zephyr provide only a very
thin MAC layer by default. This thin MAC layer supports
CSMA/CA, link layer retransmissions, and acknowledg-
ments. Many other crucial features to improve coordina-
tion among nodes, such as joining procedures, scanning,
or indirect transmissions, are not implemented because most
IEEE 802.15.4 radios do not allow operating system develop-
ers access to those features.

In this paper, we analyze fragmentation on top of a thin,
unreliable link layer for two reasons. First, such a link

layer is common in IoT deployments. Second, in this
setting, fragmentation challenges network reliability since
the loss of a single fragment may amplify load and thus
congestion.

III. SYSTEM DESIGN AND IMPLEMENTATION IN RIOT
A thorough experimental evaluation of protocols requires
sound software implementations. For the sake of compar-
ison, the protocols under investigation should be analyzed
on the same system. Unfortunately, there is no software
basis available which assembles all required components
for constrained devices. In this paper, therefore, we extend
RIOT [30], a common IoT operating system. By selecting
an open source platform and making our software publicly
available we enable reproducible research [31], [32]. Based
on our extensions, we gain detailed insights into system and
network performance.

In the remainder of this section, we present design, imple-
mentation, and configuration choices to better understand the
subsequent evaluation.

A. 6LoWPAN AND MAC LAYER
RIOT provides a stable 6LoWPAN implementation as part
of its default network stack, GNRC [30]. Instead of stat-
ically allocating packet space for each reassembly buffer,
it uses the preconfigurable packet allocation arena of GNRC,
called gnrc_pktbuf, to dynamically allocate packet buffer
space of varying length within it. This allows for high
resource efficiency and flexibility. By storing the major part
of the IPv6 datagram (1280 bytes) only in the packet buffer,
the 6LoWPAN stack requires 22 bytes (plus some additional
bytes for management), instead of allocating the complete
1291 bytes (cf., Section II-C).

To provide low delays and high throughput, the fragmen-
tation is done asynchronously. For this purpose, the ref-
erence to the datagram that needs to be fragmented is
stored in a fragmentation buffer. The data of the datagram
resides in gnrc_pktbuf. In addition to the datagram,
the fragmentation buffer also contains meta-information
needed for fragmentation, including the original datagram
size and its tag. The software architecture is summarized in
Figure 9.

GNRC only provides a very thin MAC layer that bene-
fits from radio drivers that support CSMA/CA, link layer
retransmissions, and acknowledgment handling by default.
Special care has to be taken in case of hardware platforms
that use ‘‘blocking wait on send’’ whenever the device is in a
busy state. When deploying fragment forwarding, this may
cause race conditions within the internal state machine of
the device [33] because of the faster interchange of simul-
taneous sending and receiving events. To solve this problem,
we provide a simple mechanism to queue packets whenever
the device signals that it is in a busy state. As soon as the
device becomes available again (and not later than 5 ms),
the MAC layer tries to resend the packet from the top of the
queue.
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FIGURE 9. 6LoWPAN system architecture of RIOT.

B. FRAGMENT FORWARDING
We extend 6LoWPAN in GNRC to support direct fragment
forwarding. One crucial implementation choice relates to the
creation of the first fragment. The first fragment may include
the compression header [11], which may change size during
network traversal as compression contexts such as link-layer
addresses change. Because of that, the compression may be
less or more effective depending on header updates made
by intermediate forwarders. In the worst case, the packet
becomes less compressed, leading to additional fragmenta-
tion. To tackle this problem, we apply a well-known approach
by keeping the first fragment as minimal as possible [22],
i.e., the original sender includes only the fragment and com-
pression headers and pushes the payload to the subsequent
fragment. It is worth noting that this approach does not
increase the overall number of fragments compared to a naive
approach that minimizes the size of the last fragment. In fact,
it will reduce the likely creation of additional fragments.

We support this mechanism not only on the original sender
but also on intermediate forwarders for the case that the orig-
inal sender did not provide enough space for the expanding
compression header, see Figure 10. This is possible, as all
subsequent fragments also contain an offset, which indicates
fragmentation relating to the first fragment. Furthermore,
it simplifies the implementation greatly, which in turn saves
ROM. Since the fragmentation buffer is used for this, its
default size of 1 needs to be increased so that the node is
able to handlemultiple datagrams—forwarded datagrams and
datagrams sent by the node itself—at the same time.

To keep the implementation simple, we only forward frag-
ments when the first fragment is received in order, otherwise
we reassemble the packet completely. This can be considered
a fall-back to hop-wise reassembly. We are able to do this
in contrast to just dropping the fragments as proposed in

FIGURE 10. Compression header (Cmp) handling for fragment forwarding
in the RIOT GNRC.

RFC 8930 [9] since in RIOT (i) the reassembly buffer is not
as expensive for static memory as assumed in RFC 8930 due
to the dynamic allocation arena for packets and (ii) later
incoming datagrams are preferred over incomplete reassem-
bly buffer entries when the reassembly buffer is full.

C. SELECTIVE FRAGMENT RECOVERY
We also extend 6LoWPAN in GNRC to support selective
fragment recovery (SFR). Due to the different dispatches of
SFR, our implementation can be run together with classic
6LoWPAN fragmentation, i.e., also with simple fragment
forwarding. To that end, our SFR implementation reuses
the fragmentation buffer and reassembly buffer of classic
6LoWPAN (cf., Section III-A) and the virtual reassembly
buffer of our direct fragment forwarding implementation
(cf., Section III-B) with slight adaptations to handle the new
features, such as tallying up the sequence numbers of frag-
ments in the reassembly buffer to be able to generate the
cumulative acknowledgments.

In contrast to our fragment forwarding implementation,
we do not only send the compression header in the first
fragment, because the specification of SFR accounts for the
compression header to change. If the VRB is full, our imple-
mentation falls back to reassembly, making the node onwhich
that error occurs the reassembling endpoint.

D. CongURE: CONGESTION CONTROL FRAMEWORK
To evaluate different congestion control mechanisms for SFR
in a modular way, we designed the CongURE (Congestion
Control Utilizing Reusable Elements) framework as part of
the 2021.04 release of RIOT. CongURE is designed to
be unit agnostic so it can be used in several use cases,
such as TCP or QUIC where the window size is in bytes
[23], [25], [34] or SFR where the window size is in
fragments [20].

CongURE provides two operations to fetch the current
congestion state:

1) cwnd(): congure_wnd_size_t to get the current conges-
tion window size in user defined units.

2) inter_msg_interval(msg_size: unsigned): int to get
the currently calculated inter-message interval in

VOLUME 9, 2021 143977



M. S. Lenders et al.: Fragment Forwarding in Lossy Networks

milliseconds for pacing. The size of the next message
msg_size can be used to go into the calculation of the
interval. If pacing is not supported by the congestion
control mechanism, the operation returns −1.

There are six operations to report various congestion
events:

1) report_msg_sent(msg_size: unsigned) to report a mes-
sage as sent. The message size msg_size is to be pro-
vided in user-defined units. This method is used to
increase the internal count of in-flight messages.

2) report_msg_discarded(msg_size: unsigned) to report a
message as discarded for any other reason than timeout
or loss. The message size msg_size is to be provided in
user-defined units. This method decreases the internal
count of in-flight messages.

3) report_msgs_timeout(msgs: congure_msg_t[]) to
report a collection of messages msgs times out. A col-
lection of messages is used, as timed out messages are
reported in bulk for many congestion control mecha-
nisms.

4) report_msgs_lost(msgs: congure_msg_t[]) to report
a collection of messages msgs is lost. In case the
congestion control mechanisms does not distinguish
between loss or timeout, report_msgs_lost() is an alias
of report_msgs_timeout().

5) report_msg_acked(msg: congure_msg_t, ack:
congure_ack_t) to report an acknowledgment ack for
a previously sent message msg.

6) report_ecn_ce(time: time_t) to report an ECN conges-
tion encounter for a message sent at time.

To deploy CongURE with SFR, a simple but optional
adapter was written that provides a CongURE object for
every fragmentation buffer entry. The reporting operations of
the CongURE object are then called for each corresponding
congestion event.

IV. COMPARISON OF FRAGMENT
FORWARDING METHODS
In this section, we compare four fragment forwarding meth-
ods. Our goal is to carefully explore the behavior of the
competing fragmentation schemes. Along this line we show
that using fragment forwarding over the very thin MAC layer
that many IoT systems deploy doesmore harm than good. The
key MAC layer components (CSMA/CS, link layer retrans-
missions, and acknowledgments) are not sufficient to cope
with interferences in fragmentation scenarios.
Our experiments are conducted in a real-world testbed

using class-2 IoT nodes [19] and 802.15.4 radio commu-
nication. One important aspect of the experiment design
is the underlying network topology, which we consider
by selecting specific nodes from the testbed. We want to
assure that (i) the network is widespread enough and not
too crowded, but also that (ii) it contains multiple bot-
tlenecks as described in Section II-D to stress hop-wise
reassembly.

A. SETUP
1) EXPERIMENT TESTBED AND NODE SELECTION
We deploy our experiments on the FIT IoT-LAB testbed and
use 50 nodes of the Lille site. These are constrained IoT
devices with Cortex-M3 MCUs, 64 kB of RAM, 512 kB of
ROM (STM32F103REY), and IEEE 802.15.4 radios (Atmel
AT86RF231). The radio chip provides the basic MAC layer
features such as CSMA/CA, link layer retransmissions, and
acknowledgments.
The Lille site features a challenging multihop network.

Nodes are not only distributed in a dedicated room in a
grid but also located in multiple offices spread over different
floors. The site therefore provides a realistic scenario for
different types of heterogeneous deployment. In our exper-
iments we focus on a static network topology. To ensure the
static setting, we disabled any routing protocol.
To select nodes for our experiment, we first measure basic

properties of the testbed. By correlating the geographic dis-
tance and the packet delivery ratio (PDR) between two nodes,
we found that two hops should be in range of 6.5 m or
less. This ensures that the PDR is at least 97.5%, which
we argue is acceptable. Lower PDRs do not contribute to a
better understanding of the problem space in this paper. The
network is then constructed by a breadth-first search over
all available nodes of the testbed site, starting at the sink s.
We select node 57 as the sink as it is located centrally between
the more crowded nodes in the dedicated room and the more
sparse nodes in the office space at the Lille site. This ensures
that a balanced set of both network deployment scenarios
is included. To prevent a bias towards specific nodes, our
network construction algorithm works as follows.
1) Collect all neighbors within the range of 2.2 m and

6.5 m as potential node candidates in set N . This selec-
tion expands the network as much as possible under our
PDR requirement.

2) Get a randomized, uniformly distributed sample M of
1 to 3 members in N ; s always selects 2 neighbors.

3) Add M to the network, and continue for each member
of M until 49 nodes are found.

The selection of 1 to 3 downstream neighbors per node
assures the inclusion of reassembly bottlenecks into the net-
work, as described in Section II-D.
After constructing the network, we used the same set of

nodes in all of our experiments to ensure comparability. The
resulting logical and geographical topologies are visualized
in Figure 11.Multiple paths have the same length. The longest
path consists of 6 hops.

2) COMMUNICATION SETUP
We configured all routes based on the breadth-first search
described above. Except for the sink and its neighbors,
we configured all other nodes as data senders to ensure the
need for forwarding.
All source nodes start sending UDP packets—using the

same payload—to the sink in a uniformly distributed interval
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FIGURE 11. Network topology of the selected testbed.

between 5 s and 15 s. The experiment ends after each source
has sent 50 packets.

For each fragment forwarding approach we evaluated as
manyUDP payload length as possible to see the impact of dif-
ferent packet sizes. As all the fragment forwarding strategies
we pick for our evaluation must contain payloads divisible
by 8 in all but the last fragment except for SFR, we do not
need to cover all payload sizes. As such, to further decrease
the overall run-time of our experiments we decided on an
increment of 16 for our range of payload size inclusively
between 16 and 1024 bytes.

To evaluate the performance, our experiments measure
system complexity in terms of memory usage, reliability,
specifically the PDR, and the latency between the UDP sock-
ets of source and sink.

3) SOFTWARE PARAMETERIZATION
RIOT offers a variety of compile-time configuration parame-
ters to adapt to use cases. In most of the experiments, we can
use default configurations. For the following reasons, how-
ever, we have to change some default values: (i) The default
configurations assume rather small networks. This conflicts
with efficient forwarding in large-scale mesh networks, such
as the testbed. (ii) We originally wanted to compare our
results of the fragment forwarding performance with related
work that analyzed some aspects in simulation [35]. We doc-
ument the changes of default values for the 2021.04 release
of RIOT in the Appendix.

We also adapted the configuration parameters for selective
fragment recovery to the needs of our experiments. In all runs,
we selected the number of fragment retransmissions to be
four instead of two. For the direct comparison with the other
approaches we deactivated congestion control and configured
a window size of 1 and 5 respectively to account for different
window sizes but negate potential side effects on latency by
congestion control.

We will specify further parameters in the evaluation
of the specific metric, when they differ from the default
configuration.

To evaluate end-to-end transport of the forwarding infor-
mation in every fragment (E2E) we use a modified version
of IPv6 fragmentation (see Section II-B) with 6LoWPAN
header compression (see Section II-A). To be comparable to
the 6LoWPAN fragmentation approaches we configure the
IPv6 MTU to be a non-standard compliant value of the link

TABLE 2. Bytes gained for IPv6 MTU through 6LoWPAN header
compression. IPv6 address IIDs and hop limit field cannot be elided in all
cases due to the multi-hop environment.

TABLE 3. Memory sizes [bytes] for source nodes.

FIGURE 12. Mean packet buffer utilization over each run (window
size 1 for SFR). Areas around line represent standard deviation.

layer PDU+ 22 bytes. Those 22 bytes are the bytes gained by
elision of fields due to 6LoWPAN header compression [11];
see Table 2 for a detailed tally up.

The default size of the virtual reassembly buffer in GNRC
is 16 entries. Since this only prefers direct forwarding and
selective fragment recovery, we do not need to adapt its size.
Furthermore, we have to increase the size of the common
reassembly buffer of the sink.Without this adaptation the reli-
ability decreases significantly, even for the smallest number
of fragments.

B. MEMORY CONSUMPTION
1) OVERALL MEMORY CONSUMPTION
Table 3 shows both ROM and RAM usage of the 6LoWPAN
layer at the source node for HWR, FF, and SFR. E2E is not
included, as it is implemented in the IPv6 layer and thus
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FIGURE 13. Packet delivery ratio for 50 UDP packets sent with a [5, 15] s interval per source (3 runs, IFG: Inter-frame gap, ARQ: ARQ timeout). Split to
make different SFR variants more distinguishable.

not comparable. As the fragmentation buffer size is dependent
on the window size in SFR, we fixed the window size for
that binary to 1 fragment. When compiling the software we
use arm-none-eabi-gcc v9.3.1 with -Os optimization
(size-optimal) for ARM Cortex-M3, all debug information
stripped, and the compile-time parameters we line out in
Section IV-A are applied. We use the size tool to extract
the relevant module information. To make memory measure-
ments compatible, we set the reassembly buffer size for HWR
to the same value as the VRB size (16) for FF and SFR. The
anticipated memory advantage for FF does indeed exist, even
with the GNRC strategy to not allocate 1280 bytes IPv6MTU
for every reassembly buffer entry but using the central packet
buffer instead (cf., Section III).
FF adds a small amount of RAM to keep the meta-data

required for refragmentation. Our implementation utilizes
(see Section III-B) in the asynchronous GNRC fragmentation
buffer to store that meta-data. More ROM is also needed for
the possible refragmentation of the first fragment. The major-
ity of the ≈ 500 bytes of additional ROM in the reassembly
buffer for FF in 6LoWPAN is explained by the overhead
required to distinguish whether packets need to be handled
by a VRB entry creation or put into the regular reassembly
buffer.

SFR of course uses more ROM and RAM (both
≈2 kilobytes) than FF, as the recovery mechanism adds extra
complexity and requires new data structures to be stored.

2) PACKET BUFFER USAGE
Figure 12 presents our analysis of the mean utilization of the
6144 bytes packet buffer during the overall runtime of each
experiment in percent on the y-axis for each evaluated UDP
payload size on the x-axis. To show the extremes, for SFR
we deliberately used only the window size 1 run. FF and
HWR have similar usages, but a slight advantage of ≈1%
for FF. E2E uses less space in the packet buffer compared to
FF and HWR, as the overhead of 6LoWPAN is not required.
SFR genuinely mostly sees single fragments instead of full
datagrams on most of the nodes due to the window size
being 1. As such, its packet buffer usage is the lowest of all
approaches with higher fragmentation.

The high packet buffer usage for FF is mostly caused by the
fallback to regular reassembly as we describe in more detail
in Section IV-C. A clear correlation between this fallback and
packet buffer usage was described in [36].

C. RELIABILITY AND LATENCY
Figures 13 and 14 display our results frommeasuring reliabil-
ity and latency. Figure 13 shows the reliability in terms of the
packet delivery ratio (PDR) depending on the UDP payload
length in bytes. To provide a clearer picture, we divided
the data sets into three sub-figures: Figure 13a shows the
approaches that do not allow for recovery, Figure 13b shows
4 different configurations for SFR with window size 1, and
Figure 13c shows the same configurations for SFR with
window size 5. The window sizes were chosen to compare
between two extremes: window size 1 to measure the effects
of waiting for an ACK per fragment (stop-and-wait) and
window size 5 to measure the impact of cumulative ACKs.
At higher window sizes than 6, we were able to confirm that
the PDR dropped drastically in our setup (not shown).

FF and E2E admit poor reliability. For FF this is in con-
trast to previous results where simulation and a coordinated
TSCH MAC layer was used [35]. Even for a small number
of fragments, both achieve less than a quarter of the PDR of
HWR. The PDR then quickly approach zero with increasing
number of fragments. HWR, though also performing poorly,
manages to deliver at least some packets to the more distant
nodes. The PDR of SFR on the other hand shows comparable
to HWR. For window size 1 it is even slightly better than
HWR with higher payload length—even if only by 1-2 %,
due to the recovery mechanisms of SFR.

Figure 14 depicts the latency as a 3-dimensional CDF,
showing the latency in seconds on the x-axis, the CDF on
the y-axis, and the source-to-sink distance in hops on the z-
axis. The UDP payload lengths are binned together based on
the respective number of fragments each protocol requires
for that payload length shown in each dedicated plot. Due to
its larger latency in SFR, the x-axis is scaled differently and
shows 0 to 35 seconds.

The latencies we measured for FF (see Figure 14b) are also
significantly higher compared to previous simulation work.
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FIGURE 14. Latency for 50 UDP packets sent with a [5, 15] s interval per source (3 runs). For the SFR results an inter-frame gap of 0.1ms and an ARQ
timeout of 1.2s is used.

HWR (see Figure 14a) is expected to operate slower because
each node needs to reassemble the entire frame prior to for-
warding to the next hop. E2E (see Figure 14c) performs simi-
lar to HWR with low fragmentation, but as reliability quickly
drops to 0% with higher fragmentation, the latency becomes
infinite for higher payloads. SFR (see Figures 14d and 14e)
has the highest latency compared to the other protocols, due
to its recovery mechanisms and the induced inter-frame gap.
In the given plots we only show the results for inter-frame
gap 0.1ms and an ARQ timeout of 1.2s. When increasing
inter-frame gap and ARQ timeout the latency grows. With
a window size of 1 fragment (see Figure 14d) we see signif-
icantly higher latencies with higher fragmentation compared
to a window size of 5 fragments (see Figure 14e). This is
because the sender does not have to wait for an ACK for
each fragment, but only every fifth fragment, thus fittingmore
fragments into a smaller timeframe.

In our experiments, we see significantly more link layer
retransmissions per node using FF compared to HWR [36],

and the same holds for E2E and SFR (not shown). This is
caused by much faster send and receive triggers on the device
due to immediate fragment forwarding, which increases colli-
sions and packet loss on the single antenna radio. Moreover,
this results in straining the single buffer of a device, which
far more often needs to discard unacknowledged incoming
packets while it is busy with either sending or receiving
a different packet. This invokes link layer retransmissions
and eventually contributes to packet loss. An example for
these occurrences is illustrated in Figure 15. Based on local
measurements using a logic analyzer on a sister device that
deploys the same radio (AT86RF233 [37]), we are able to
confirm that the device can remain busy for up to 4 ms.
Additional measurements on the same device type show that
even the shortest fragmented datagram with HWR (88 bytes
of UDP payload length) requires ≈8 ms from entering the
reassembly buffer to leaving the fragmentation buffer on re-
fragmentation. This leaves both the device and the medium
more relaxed with HWR.
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FIGURE 15. Example of L2 retransmissions caused by the device being
busy, resulting in missing ACKs.

FIGURE 16. Network topography of the selected testbed nodes for
congestion control evaluation with d being the sink, si being both
sources and forwarders and f being only a forwarder.

In previous evaluations [36], [38], it was also shown
that packets are lost with FF and SFR when the respective
reassembly buffers are full.

V. EVALUATION OF CONGESTION CONTROL WITH SFR
Our evaluation of congestion control with SFR were made in
a similar but much smaller setup than we used for compari-
son of the fragment forwarding methods in Section IV. The
forwarding bottlenecks we described in Section II-D also are
a point of congestion so the basics of our network topology
choices still stand.

Our goal is to explore a suitable congestion control mech-
anisms for SFR on top of a MAC layer consisting only of
CSMA/CS, link layer retransmissions, and acknowledgments
by looking into common mechanisms used in the wider
Internet.

A. SETUP
1) EXPERIMENT TESTBED
For our congestion control evaluation for SFR we picked a
much smaller network than the one used for Section IV to
have a better control over how and where congestion occurs.
Here we used 8 nodes of the Grenoble side, which are the
same type of node as the once at the Lille side we described
in Section IV-A. We selected a T-shaped set of nodes
(see Figure 16) to assures that the nodes are at least 1 m
spaced from another and that the forwarder f would provide
a bottleneck for hop-wise reassembly.

2) COMMUNICATION SETUP
We configured all routes statically to form the T-shape
described above. Except for the sink and its neighbors,
we configured all other nodes as data senders to ensure the
need for forwarding.

For our evaluation are only interested in the effects that
different number of fragments have on our results. As such,

we pick the UDP payload such that SFR increases the number
of fragments:We start at 8 bytes for 1 fragment and increment
the payload size by 96 bytes for each run, until we reach
1169 bytes, or 13 fragments, just under the IPv6 MTU in
IEEE 802.15.4 for of 1232 bytes [7] (1280 bytes minus the
48 bytes for the IPv6 and UDP headers). For each payload
we repeat the run 10 times.

To cause as much congestion on the resources of the nodes
as possible, all source nodes send UDP packets—using the
same payload—to the sink in a uniformly distributed interval
between 250 ms and 750 ms. The experiment ends after each
source has sent 1200 packets.

3) SOFTWARE PARAMETERIZATION
We mostly use the same software parameterization as in
Section IV-A with the difference that congestion control is
now activated. For the congestion control comparison, to have
a good base-line for all congestion control mechanisms we
set the initial window size for SFR to 2. Due to the higher
frequency of packets we increase the size of the packet
buffer arena of RIOT’s default network stack GNRC from
6 to 40 kilobytes. This assures that loss is not happening due
to packets not being able to be allocated. While a full packet
buffer could be interpreted as a point of congestion, it skews
the results especially with larger UDP payloads, where a
small packet buffer is filled by only a 2-3 reassembling
datagrams at the sink.

B. MEMORY CONSUMPTION AND SYSTEM ANALYSIS
In Figure 17, we compare the build sizes of modules rel-
evant to SFR with CC in our implementation: 6LoWPAN
SFR itself, the 6LoWPAN fragmentation buffer (contain-
ing state variables for CC), and the CongURE module.
To see the cost of abstraction due to the CongURE mod-
ule, we unrolled each CongURE implementation into the
adapter code of the SFR implementation. The binary was
generated using arm-none-eabi-gcc v9.3.1 with -Os
optimization (size-optimal) for ARM Cortex-M3, all debug
information stripped, and the compile-time parameters we
line out in Section IV-A. We use the size tool to extract the
relevant module information.

All implementations use about 2.5 kbytes of RAM and
4-5 kbytes of ROM, depending on complexity. RAM mostly
increases based on the state variables. ROM expectedly
increases by a few hundred of bytes with each level of com-
plexity in CC.

Abstraction using the CongURE framework only adds a
few bytes of RAM compared to the unrolled version with
at most 62 bytes in the QUIC implementation. In ROM the
abstraction can add up to about 500 bytes, mostly due to both
the indirection introduced and the way CongURE initializes
constants in a reusable way.

C. RELIABILITY
To analyze the impact of congestion control, we only looked
at PDR as the latency varies quite widely depending on the
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FIGURE 17. Module size in bytes for 6LoWPAN SFR, 6LoWPAN
fragmentation buffer (FB) and CongURE compared to CongURE unrolled
into SFR.

congestion in the network. Figure 18 shows PDR by number
of fragments. Note, that we left out 1 fragment on the x-axis
intentionally, as fragmentation is not triggered for a single
frame and the far higher PDR would make the remaining
results less visible. For reference, see Figures 13b and 13c.
However, note that the actual PDRs are not comparable due
to the smaller network and the higher sending rate.

While for 2 fragments the performances of all CC mech-
anisms is comparable around 2%, they vary quite drastically
in higher fragmentations: SFR App. C only outperforms both
TCP variants especially in very low fragmentations, but at
6 fragments it is often comparable or under the two TCP vari-
ants. An interesting observation is the saw-tooth like shape of
its PDR plot, with even number of fragments being outper-
formed by the next higher odd number of fragments. This is
due to the congestion window defaulting to 2 and only being
able to shrink to 1 on timeout with this mechanism: Even
numbered fragments oftentimes need a timeout to shrink the
window for the transmission to succeed. For odd numbered
fragments, on the other hand, this is not necessary for at
least the last fragment, when amortizing the transmission
sequence.

D. CONGESTION EVENTS
We need to look very selectively on the dataset to analyze
the influence on the congestion window and inter-frame
gap (IFG) of the congestion events that are reported by the
CongURE API. Figure 19 shows two selected transmissions
for each CC mechanism—one succeeding, one timing out—
for the transfer of 12 fragments. We selected the transmission
based on the following criteria, in that order, (i) having at least
two timeouts in the timeout plots to better show its influence
on congestion window and inter-frame gap, (ii) IFG changes,
if any exist, (iii) ECN events occurring, if any occurred,
and (iv) similarity of the course events. We selected s5 (see
Figure 11) for the node under observation, as both s5 and s6
show the most ECN events.

For SFR App. C we see the expected decrease of the
congestion window on timeout in Figure 19a, while on ACK,

FIGURE 18. SFR packet delivery ratio (PDR) with congestion control for
1200 packets sent with a [250, 750] ms interval per source (10 runs).

it stays at 2 in Figure 19e. As there is no support for pacing,
the IFG stays at the default of 170 ms.

For TCP Reno and TCP ABE (see Figures 19b, 19c,
19f and 19g), we often see spikes in the congestion win-
dow, which are explained by the window being increased
by ACK’d fragments and then immediately decreased by
fragmentsmarked lost within the sameACK.However, ACKs
lead to a rapid increase in the window size, which is not as
easily mitigated even by the multiplicative decrease due to
loss, timeout or ECN. As such, the congestion windows stay
rather high, risking a lot of loss, may it be due to congestion
or intrinsic loss of the LLNs. Furthermore, we see that both
start already with a window size of 4. This is due to the
initial window size being defined by the maximum segment
size (set to 1 fragment for SFR) in RFC 5681 [23], rather
than having a constant initial window size as the other two
approaches. This makes both TCP variants rather optimistic,
but not very suitable for our scenario. However, with the
erratic increase of the congestion window we see with ini-
tial window size 4, there is doubt, adopting the mechanism
for 6LoWPAN, by setting the window to our default of 2
statically, would make any difference. As with SFR App. C,
there is no support for pacing, so the IFG stays at the default
of 170 ms.

For QUIC we saw in Section V-C, that pacing allows for
a better PDR. Sadly, for 12 fragments we rarely see the IFG
change, as oftentimes we only see one timeout that deletes the
fragment buffer, while the other resends are already expended
by negative ACKs for the fragment. For the timeout event we
were able to see it a few times, for which we present the trans-
mission in Figure 19d. In the success case (see Figure 19h),
we see similar behavior as for TCP ABE, with the special
ECN-behavior giving a slight advantage over TCP Reno.

VI. RELATED WORK
In prior work [36], we compare HWR and FF. In this paper,
we extend the scope and contribute the comparison of E2E
fragmentation and SFR as well as the evaluation of different
congestion control mechanisms in the context of fragmenta-
tion. This comprehensive analysis allows us to guide discus-
sions why the use of direct forwarding approaches should be
discouraged in scenarios that deploy very thin MAC layers.

Kent et al. [39], [40] discussed potential harms already
at the beginning of the Internet and thus paved the way for
proper protocol design.

VOLUME 9, 2021 143983



M. S. Lenders et al.: Fragment Forwarding in Lossy Networks

FIGURE 19. Consistent selection of datagram transmissions on one of the forwarding sources at 12 fragments with their respective congestion events
(50% opacity, i.e., darker events mean multiple rapidly repeating events), congestion window (CWND) and calculated or static inter-frame gap (IFG). For
each congestion control mechanism two transmissions are shown, one succeeding and one timing out. The selection was made based on (i) by at least
two timeouts in the timeout graphs, (ii) by, if any, IFG changes (iii) ECN events occurring, if any, and (iv) similar event occurrences, in descending priority.

Papadopoulos et al. [41] discussed the ongoing work
within the IETF on 6LoWPAN fragment forwarding and
selective fragment recovery already. In contrast to their work,
our work provides an in-depth analysis of these approaches.

Other approaches that use similar concepts as FF mainly
focus on datagram prioritization [42], [43]. Similar to SFR,
Chowdhury et al. [44] proposed a standard compliant NACK-
based approach for selective fragment recovery. Since those
NACKs, however, are associated with the datagram identifier
(a, ga(D)) (see Section II-C), this mechanism only allows for
hop-wise recovery and does not cover the whole end-to-end
path when using FF.

Tanaka et al. [35] used the 6TiSCH simulator [45] to ana-
lyze the performance of FF compared to HWR. The authors
show that FF is a promising option in IEEE 802.15.4e (TSCH)
and that as such also SFR could yield better results.

Awwad et al. [46] also compared FF to HWR in a sim-
ulator and conducted experiments in a testbed. They used a
topology consisting of 4 nodes in a line. This setup ignores
challenging bottlenecks, which occur in real deployments
(see Section II-D). Furthermore, they only compared their
proprietary solution of fragment forwarding with HWR in the
testbed evaluation. In contrast to this, we evaluate standard
compliant protocols in a complex testbed setup.

In our work, we did not consider the frame delivery mode
for link-layer meshes of 6LoWPAN [7]—commonly known
as mesh-under [8, Section 1.2]—because it is known that
such a solution falls behind HWR [44].

Hummen et al. [47] analyzed the security implications
of 6LoWPAN fragmentation. They considered both hop-
wise reassembly and direct fragment forwarding, but also
mesh-under mode. In their paper they present 2 possible
attack vectors utilizing 6LoWPAN fragmentation: A frag-
ment duplication attack and a buffer reservation attack.

Buffer reservation attack only effects not performing hop-
wise reassembly and the reassembling end-points. The
attacker spams the victim with first fragments with chang-
ing datagram tags, so that the reassembly buffer is quickly
exhausted. All fragment forwarding schemes are however
susceptible to a fragment duplication attack in which the
attacker sends bogus subsequent fragments that identify to
belong to a different fragment chain, effectively invalidating
the data within the reassembled datagram. As a solution
the authors propose an extension to 6LoWPAN fragmenta-
tion utilizing content chaining against fragment duplication
attacks and a split reassembly buffer approach against buffer
reservation attacks.

Combining fragmentation, selective acknowledgments,
and congestion control is an approach novel to 6LoWPAN
Selective Fragment Recovery. As such, not much research
considered that combination yet.

VII. DISCUSSION
A. IS FRAGMENT FORWARDING A VIABLE OPTION
WITHOUT A COORDINATED MAC LAYER?
Our testbed experiments clearly indicate that direct frag-
ment forwarding is outperformed by HWR if direct frag-
ment forwarding is based on the widely deployed, very thin
CSMA/CA MAC layer. Our results systematically confirm
prior assumptions [9] in practice. Radios that are busy send-
ing a fragment are not able to listen for the next fragment,
leading to high losses. In contrast to this, HWR allows for
a datagram to be received fully, causing the radio to be in
receive mode first and only to switch to send mode when the
node is fragmenting the datagram again. In [35] the authors
show that with direct fragment forwarding an advantage can
be gained when using a coordinated MAC layer such as
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IEEE 802.15.4e TSCH. The only advantage of FF over
CSMA/CA we could clearly identify is its reduced RAM
consumption.

SFR reduces the bottleneck of HWR while providing a
similar packet delivery ratio. Using lower window sizes may
improve the results even further. However, a higher latency is
to be expected due to the recovery mechanism.

In practice, whether fragment forwarding is applicable and
if so on which MAC protocol depends on the deployment
scenarios and use cases. Ourwork helps to assess the potential
deployment space.

B. IS END-TO-END FRAGMENTATION A
VIABLE SOLUTION?
In our E2E setup using a modified version of IPv6 fragmenta-
tion, we show that the performance disadvantages cannot be
reduced when carrying the forwarding information in every
fragment. The only advantage we observe is a smaller mem-
ory footprint due to the VRB and the 6LoWPAN fragmenta-
tion layer, which are not required, on the cost of using bytes
of the link layer PDU to carry the forwarding information.
At least for classic IEEE 802.15.4 where the link layer PDU
is very restricted, this cost is not negligible. Larger SDUs
(e.g., 400 bytes in the PLC protocol ITU-T G.9903) might
not have to deal with these restrictions.

It should be noted, however, that we used IPv6 fragmenta-
tion in a very ideal configuration in our experiments. Other
extension headers such as routing headers or hop-by-hop
optionsmight also need to be carried in every fragment.While
the 6LoWPAN Routing Header specified in RFC 8138 [48]
may be able to compress some of those, the remaining headers
can quickly exceed an MTU that is smaller than the required
1280 bytes specified in [6].

C. WHAT KIND OF CONGESTION CONTROL
SHOULD BE USED WITH SFR?
Providing optional congestion control in SFR has the poten-
tial to provide a good balance between high packet delivery
ratio and low latency. We showed that a highly sophisticated
congestion control mechanism utilizing pacing, such as the
one used by QUIC, can yield benefits for SFR. Some adap-
tations tailored to LLNs are required, though: The window
size should be increased very conservatively and the initial
window size should be kept as minimal as possible.

Using ECN has little impact on the overall performance:
Both TCP variants perform very similar, despite TCP ABE
using an exponential backoff for the window decreases on
ECN. This is surprising as the common metric, packet loss,
does not serve as a good heuristic to detect congestion in lossy
and low-power networks. Explicit congestion indicators such
as ECN would have been expected to improve the situation
when congestion occurs in the network. However, the very
nature of LLNs weakens this advantage, since ECN in SFR
is marked in the fragments by the forwarders on congestion
but delivered to the fragmenting end-point in the ACK. Both
messages can easily get lost after the ECN flag was set in

the headers. In fact, we observed the ECN flag being set
on the forwarders in SFR App. C, but we did not observe a
corresponding ECN event at the fragmenting end-point.

D. HOW DOES FRAGMENTATION WORK WITH OTHER
LINK LAYER TECHNOLOGIES?
Bluetooth Low Energy (BLE) provides fragmentation and
reassembly, implemented in its Logical Link Control and
Adaption Protocol (L2CAP). It is comparable to a hop-wise
SFR. This means nodes face not only similar bottleneck prob-
lems compared to HWR but also latency issues as introduced
by SFR. However, the hop-wise reassembly occurs much
closer to the device and within the coordinated MAC layer
of Bluetooth Low Energy. As such, buffer space and air time
can be allocated much more tailored to the specific datagram.
Since acknowledgments are already part of the link layer,
the latency issues we saw in this papermight bemuch smaller.
Due to the coordinated MAC layer in BLE, all remaining
latency penalties because of ACKs might also be negligible
when compared to a similar approach in IEEE 802.15.4e
TSCH (6TSCH) or DSME [26]. Other low latency modes
of 802.15.4e such as LLDN or LECIM only allow for star
topologies, so they do not fit our initial use case for fragment
forwarding.

It should also be noted that for low-power wide area net-
works (LPWANs) such as LoRAWAN, SigFox, or NB-IoT
deployment scenarios face much more extreme constraints
than in most other low-power and lossy network technolo-
gies [5]. As such, the IETF specified a whole different
suite of IPv6-over-X adaptation layer protocols—Static Con-
text Header Compression and Fragmentation (SCHC) [14]—
which is not compatible with 6LoWPAN. SCHC introduces
different fragmentation schemes, tailored to the underly-
ing link layer technologies, called SCHC Fragmentation/
Reassembly (SCHC F/R). SCHC uses fragment forward-
ing but very tailored to the infrastructure of the underlying
LPWAN. As such the forwarding can be much more reli-
able. In [14] three SCHC F/R modes are defined. Those
may be used for different link layer technologies (i) No-ACK
mode, which is comparable to FF in this paper, (ii) ACK-
Always mode, which is comparable to SFR in this paper, and
(iii) ACK-on-Error mode, which is a NACK approach, com-
parable to the one proposed in [44]. Later SCHC extensions
might add more modes.

All the proposed modes are comparable to approaches
evaluated in this paper. This is the reason why we argue that
the same conclusions apply for the different SCHC modes.
This is bolstered in RFC 8724 [14], which clearly states that
the selection of the mode is dictated by the underlying link
layer.

VIII. CONCLUSION AND OUTLOOK
In this paper, we compared four different fragment forward-
ing schemes—end-to-end fragmentation, hop-wise reassem-
bly, direct fragment forwarding, and selective fragment
recovery—using large real-world experiments, as well as

VOLUME 9, 2021 143985



M. S. Lenders et al.: Fragment Forwarding in Lossy Networks

congestion control mechanisms for selective fragment recov-
ery. We showed that hop-wise reassembly is the preferred
choice to achieve proper reliability and latencies, even if
deployed on top of a thin MAC layer. Our careful analy-
sis reveals that the radio of a node cannot handle the fast
reception and sending of fragments, which occurs in case of
direct fragment forwarding but is far more relaxed in hop-
wise reassembly.

Strictly coordinating MAC layer schemes such as Time-
Slotted Channel Hopping (TSCH) or the Deterministic and
Synchronous Multi-channel Extension (DSME) of 802.15.4e
have the potential to improve reliability without sacrificing
data rates. Prior work [35] focused on simulating TSCH
in small topologies of ten nodes but showed promising
results for that MAC layer using direct fragment forwarding.
Integrating those access schemes into existing 6LoWPAN
implementations to analyze whether they can copewith large-
scale sender scenarios will be part of our future work.

A NOTE ON REPRODUCIBILITY
We explicitly support reproducible research [31], [32]. Our
experiments have been conducted in an open testbed. The
source code of our implementations (including scripts to set
up the experiments, RIOT measurement apps etc.) is pub-
lished under doi:10.5281/zenodo.5575035.

APPENDIX A: ARTIFACTS
Our implementations have been provided to the RIOT com-
munity. Fragment forwarding and selective fragment recov-
ery are officially supported in RIOT since release 2021.01.
The CongURE framework is officially supported in RIOT
since release 2021.04. Open Pull requests are available via
the following URLs:
App. C: https://github.com/RIOT-OS/RIOT/pull/16158
QUIC: https://github.com/RIOT-OS/RIOT/pull/16159
Reno: https://github.com/RIOT-OS/RIOT/pull/16170
ABE: https://github.com/RIOT-OS/RIOT/pull/16171

APPENDIX B: COMPILE TIME PARAMETERS IN RIOT

TABLE 4. Changed compile time parameters in RIOT 2021.04. Values with
asterisk (*) only apply for the congestion control evaluation in Section V.
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