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Random numbers are an essential input to many functions on the Internet of Things (IoT). Common use cases
of randomness range from low-level packet transmission to advanced algorithms of artificial intelligence
as well as security and trust, which heavily rely on unpredictable random sources. In the constrained IoT,
though, unpredictable random sources are a challenging desire due to limited resources, deterministic real-
time operations, and frequent lack of a user interface.

In this article, we revisit the generation of randomness from the perspective of an IoT operating system
(OS) that needs to support general purpose or crypto-secure random numbers. We analyze the potential at-
tack surface, derive common requirements, and discuss the potentials and shortcomings of current IoT OSs.
A systematic evaluation of current IoT hardware components and popular software generators based on
well-established test suits and on experiments for measuring performance give rise to a set of clear recom-
mendations on how to build such a random subsystem and which generators to use.
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1 INTRODUCTION

Random numbers are essential in computer systems to enfold versatility and enable security.
Almost every operating system (OS) provides ways to generate random numbers. Unfortunately,
misconceptions about randomness are common in the design and implementation of operating
systems [29]. With this work, we want to shed light on the ever-confusing concept of randomness
and guide the design of systems that operate constrained embedded devices.

In the Internet of Things (IoT) random numbers are required by various applications and
system components, not only in the context of security but also in basic system operations. Many
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Fig. 1. The role of random number generation in IoT applications.

media access control protocols, for example, apply random delays to avoid interferences. Figure 1
presents an overview of the typical use cases in an IoT system.

Established IoT applications such as environmental monitoring, automated machinery, ma-
chine to machine (M2M) communication, and incident reporting utilize random input. The need
for random numbers increases even further with the advent of Artificial Intelligence (AI) in the
IoT, which shows promise to improve existing use cases as well as to create completely new scenar-
ios on small and cheap devices. Machine learning at the Internet edge, for example, may be used
to pre-process data to improve physical measurements and reduce network load. This involves
randomized algorithms and large-scale random sampling running on IoT devices.

The IoT does not only introduce large quantities of devices to the wild but in particular resource-
constrained, embedded devices (i.e., Class 0 to Class 2 [23]) to the Internet edge. IoT nodes of
Class 0 are programmed with bare metal firmware because of extremely limited hardware re-
sources. Class 1 IoT nodes more and more utilize operating systems instead of bare metal firmware.
More than a dozen open- and closed-source systems exist that can operate various classes and types
of devices. Our work is motivated from the heart of the RIOT system design. RIOT [12] contributes
randomness to standard networking [64], security [41], resource management [93], and other user
functions. Our insights about the creation of random sequences in the IoT can be applied to all
types of devices, though.

Producing random sequences on low-end IoT nodes faces particular challenges. As a frequently
invoked system service, a random function should be frugal in resources. Neither should it delay
algorithms, procedures, or protocols, nor should its state overhead diminish the scarcely avail-
able main memory, nor should its energy demands affect the system. Many random algorithms
deployed in regular computer systems or clouds are too demanding and violate these constraints.
Hence, it is important to identify generators that comply with the IoT resource and energy con-
straints, which is a major objective of this article.

Random numbers are also required in almost all security primitives to generate or perpetuate
secrets such as encryption keys or cipher streams. Security protocols and securing communication
layers pose strong requirements on the quality of random numbers for guaranteeing confidential-
ity, integrity, and privacy. The left part of Figure 1 displays the composition of security components,
which are assembled in a crypto-stack. Security protocols (e.g., IPsec, DTLS, OSCORE) rely on keys
and nonces to encrypt, sign, or verify network packets. Keys and nonces are often generated from
random input. Naturally, they must resist prediction and the random input must consequently be
unpredictable as well. Such demands require a maximized entropy source in the system. Having
a robust security system in place will also enable completely new security applications benefiting
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from IoT devices, e.g., to implement off-grid blockchain transactions or further variants of dis-
tributed ledger technologies.
In the literature, a “random sequence” is often referred to by the definition of D. H. Lehmer :

“A random sequence is a vague notion [. . . ] in which each term is unpredictable to the
uninitiated and whose digits pass a certain number of tests traditional with statisticians.”

Lehmer [63]

Ideally, true random number generators (TRNGs) create maximized entropy. True random-
ness, however, is hard to enforce and the generation of entropy consumes system resources that
are sparse on IoT devices. As an alternative, cryptographically secure PRNGs (CSPRNGs) pro-
vide unpredictable random numbers suitable for security purposes. CSPRNGs are based on a proof
that defines hardtosolve challenges that an attacker is unable to solve and to break. To be fully un-
predictable, though, the CSPRNG still requires high entropy for initial seed values. True random
sequences are generated from random physical processes such as thermal noise, manufacturing
inaccuracies, or crystal drift. Current personal computers extend such sources to sound or video
input, disk drives, user keystrokes, and more as proposed by the IETF [1]. These interfaces do
not necessarily exist on embedded devices. There may be complementary sources of random in-
put such as antenna noise or sensor measurements. Still, collecting random values is difficult and
resource-intensive, because underlying processes are slow or do not output continuously. Further-
more, running additional hardware components increases energy consumption.

Requirements on the quality of random secrets on constrained devices are similarly strict as with
server machines that are easily available to adversaries. Still, cryptographic operations involved
in CSPRNGs introduce a notable overhead in processing time and energy consumption on con-
strained IoT devices that often run on small batteries. Exploiting this, an adversary who manages
to trigger random operations on the IoT device may even run energy-depletion attacks. Hence, it
is of particular importance to choose algorithms and implementations of CSPRNGs that minimize
resource loads while standing up to the standards of unpredictable secrets.

Pseudo-random number generators (PRNGs) are deterministic algorithms that output se-
quences with random properties. They require a truly random seed as input to start an unpre-
dictable sequence. If properly seeded, then these generators expand a comparably short seed value
into a long sequence of random numbers [34] while discontinuing to depend on (physical) random
processes. Using a PRNG also reduces the attack surface for adversaries with physical device ac-
cess. On low-cost embedded platforms, however, it is hard to generate a qualified seed if suitable
hardware resources are missing. This raises a major challenge for the operating system, as it needs
to abstract the hardware without sacrificing functionality.

In this article, we explore the building blocks for proper randomness in the constrained Internet
of Things. We start with considering the security impact and the corresponding attack surface
(Section 2). Next, we discuss the requirements that emerge for random number generation
(Section 3) as well as its embedding into a random IoT-OS subsystem (Section 4). The major con-
tribution of this article follows with the systematic testing and performance evaluation of com-
mon hardware and software generators on IoT platforms. First, we recap the statistical test suites
(Section 5) and then analyze popular off-the-shelf random number hardware along with a seed
generator based on PUFs (physically unclonable functions) (Section 6). Second, we perform
analogous tests and evaluations for pseudo-random number generating software (Section 7) and
deduce recommendations for general purpose and crypto-secure generators in the IoT. We specif-
ically evaluate randomness in the context of emerging AI applications and hardware platform
that represents a device class currently evolving to address AI processing demands at low energy
cost on edge devices (Section 8). Comparing hardware and software performance properties and
resource consumption leads to a conclusive discussion on how to combine and jointly deploy the
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different hardware and software components (Section 9). We summarize four clear recommenda-
tions that immediately apply in practice in the conclusions (Section 10). We introduce important
acronyms used in this article in Supplemental Material (see Table 1).

2 THE IMPACT OF RANDOM INPUT ON IOT SECURITY

The Internet of Things extends the distributed Internet system at the edge by a new, massive
set of constrained devices. Secure communication in the IoT relies on cryptographic protocols
of consistent design and proper practical instantiation, which includes provisioning of random
numbers. Protocol security is commonly built on primitives that can be mathematically proven to
meet security requirements. Such proves often rely on the hypothesis of a random oracle [18] that
produces truly random input on request. More advanced, complex protocols are then constructed
by securely composing these primitives. Canetti [27] was the first to introduce a definition of
protocol security that is provably preserved under composition.

Secrets such as keys or intrinsic function values are spontaneously derived from random in-
put. Security degrades whenever randomness is flawed. Extending the desired level of security
to the constrained IoT edge is a hard problem, and random number generation on embedded de-
vices must be seen as one of the key challenges in this context. Cryptographically secure random
numbers require statistical robustness to withstand statistical attacks. Cryptanalytic attacks, how-
ever, encompass additional attack vectors to disclose random state, the previous, and future output.
Whenever an attacker can break in the current state of the random system, he should not be able
to calculate back previous random values. This robustness property is known as forward secrecy
and can be achieved by applying a non-invertible cryptographic function.

Conversely, the attacker in possession of the current state should neither be able to predict fu-
ture random output, which is known as backward secrecy. Establishing backward secrecy requires
entropy for refreshing the generator state. These operations can be costly on a constrained device,
and it is the objective of this work to identify feasible solutions of high quality standards. We dis-
cuss details of qualitative requirements in Section 3 and evaluate the tradeoffs in Sections 7 and 9.

A variety of prominent attacks are based on vulnerabilities of random number generators in
real-world systems, and the literature provides a plethora of cryptographic analyses and attack
scenarios [26, 34, 35, 40, 46, 50, 53–55, 65, 82, 92, 102, 106, 109]. In reality, there are even more
attacks anticipated, many of which target at zero-day exploits. Kelsey, Schneier et al. [55] criticize
a lack of a widespread understanding of possible attacks against random number generators among
system developers. Given the shortcomings of many random subsystems, it is worth considering
the corresponding attack surface of the specific environment.

In the following, we present and contrast three common attack taxonomies [40, 55, 106] to clarify
attacks on the random subsystem of IoT devices: (i) a cryptographic perspective, (ii) an embedded
device perspective, and (iii) a systems perspective.

2.1 Cryptographic Taxonomy

An attack on a random number generator is an intrusive attempt of distinguishing between the
produced sequence and truly random numbers. This distinction would open doors to predict future
outputs or reproduce recent outputs that might have been used for generation of secrets in the past.
The situation becomes even worse if an adversary manages to direct future numbers of a random
sequence. Kelsey, Schneier et al. [55] enumerate three classes of analytical attacks:

Direct Cryptanalytic Attacks monitor PRNG outputs to gain knowledge about the system to
distinguish between pseudo-random output and truly random bits.

Input-based Attacks require access to PRNG inputs (seeds and initializations vectors) to inject
known test sequences and perform further cryptoanalysis on random outputs.
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State Compromise Extension Attacks based on previously compromised internal state of the
generator and enables prediction or backtracking within the pseudo-random sequence.

These three attacks target PRNG core functions and may lead to broken security schemes and
protocols. In the IoT, vulnerable implementations do not only affect privacy concerns, and so on,
but may also lead to actual physical damage because of IoT actuators.

2.2 Embedded Device Taxonomy

Generating random numbers on computers with a human-machine-interface has been studied
extensively in the past [26, 34, 35, 50, 53, 55, 92]. These approaches can also be applied to inter-
connected embedded devices with our without user interfaces but are exposed to additional attack
vectors. Francillon et al. [40] introduce two types of attackers for the case of wireless sensor nodes.
Remote Attackers mainly target at cryptanalytic and input-based attacks. Without accessing the

node directly, an adversary tries to compromise or manipulate the generator state, e.g., by moni-
toring and disturbing communication channels. In this particular example, wireless noise has been
used to generate randomness. An adversary with access to the local wireless network must thus
be considered a potential threat to perform an external attack.

Invasive Attackers gained read access to the internals of a generator and compromised its state
at one point in time. This definition does not include write access or code injection. Perfect state
knowledge of a deterministic pseudo-random algorithm allows the adversary to predict future
outputs, and it can reproduce sequences that have been generated in the past, i.e., for cryptographic
key generation. Unless true random vales are added to the generator state periodically, the system
remains fully predictable. The update interval determines the maximum time that a generator
remains vulnerable. Compromising the state by read access is also named an internal attack.

2.3 System-centric Taxonomy

In the IoT, a large number of constrained embedded devices inter-connect to each other and to
the global Internet. On the one hand, broadening the networking capabilities increases the attack
interface, especially with availability from the outside of a local network. On the other hand, sim-
ple IoT devices entail special considerations in comparison to traditional networked devices such
as servers, personal computers, or smartphones. Many IoT devices are very constrained in hard-
ware capabilities due to minimizing price and form factors, as well as energy resources. These
limitations do not only affect computational power, but often imply sparse hardware protection
features. As a consequence, IoT devices often lack permission management for code execution,
memory protection mechanisms, as well as secret storages.

IoT deployments can grant physical access to the hardware, which opens a potential interface
to analyze and monitor delicate key material, firmware, or even program execution on a device
if tamper detection is not in place. We argue that secure random number generation cannot be
sustained in the case that an adversary has full read or write access to the device. Shielding attack
vectors without read or write access demands for additional hardware capabilities and manufactur-
ers of low-power chips already reacted. STMicroelectronics [106] defines three groups of attacks
against microcontrollers (MCUs).

System Software Attacks focus on security and resilience affected by weak implementations,
bugs, or insecure protocols after analyzing or even manipulating program execution. Disturbances
are possible even without device access via network interfaces, e.g., by sending malicious packets,
or by triggering the execution of non-verified or untrusted library functions that may be already
part of the device firmware. The latter often relates to “monkey testing” or to insider knowledge.
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Hardware Non-invasive Attacks require hardware access. This category includes any kind

of interface that allows interacting with the device directly, such as debug ports, or bus interfaces
(UART, SPI, I2C, ...). The most dangerous attacks for random sources that rely on physical processes
are based on fault injection. Typically, an adversary exploits the device under environmental con-
ditions that it is not designed for. Prevalent fault injection parameters are temperature variations,
microwave induction, or voltage manipulation. Furthermore, side channel analysis such as power
profiling and timing analyses fall in this category.

Hardware-invasive Attacks cover advanced techniques that enable access to the device silicon
with access to hidden secrets, even if device protection mechanisms are in place. Such attacks are
usually very complex and require specific measurement instruments.

Recently, hardware manufacturers of low-power microcontrollers have started to provide dif-
ferent countermeasures to the physical attack surface, ranging from debug port locks, tamper
detection indicators, memory protection units, and isolated code execution environments. Also,
hardware crypto acceleration on the chip becomes more widely available. These features should
be used wherever possible. Nevertheless, many low-cost devices that are supported by IoT operat-
ing systems do not provide all (or any) of these capabilities. Implementations and algorithms used
for random number generation should be designed around the concepts of (i) a high modularity
to ease partial use of hardware protection features and (ii) robustness even if hardware protection
is missing.

Random number generation cannot be protected if the adversary has full control over the device.
Analytic attacks as well as fault injections can be shielded, though, by incorporating cryptographic
primitives and carefully gathering entropy for seeding the PRNG, as we will discuss next.

3 GENERATING RANDOMNESS IN THE IOT

Every day in the life of an IoT device, random numbers are requested by a variety of use cases.
These use cases separate into two classes: either general purpose or cryptographically secure random
input. While general purpose use only requires sufficiently well-represented statistical properties,
cryptographically secure random numbers must also remain unpredictable even under malicious
attacks. While the first category can be achieved fairly easily, the provisioning of secure random-
ness is very challenging in the constrained regime and—depending on the attacker model and
strength—may not be achievable at all.

3.1 General Purpose PRNGs

General purpose PRNGs are employed for tasks independent of security aspects. Typical use cases
include the jittering of network protocol timers or media access protocols (e.g., random back-off
in CSMA) to avoid collisions on a medium. Other applications of general purpose PRNGs include
randomized sampling of sensor measurements and fuzzy testing.

A uniformly distributed stream of statistically independent random numbers is the desired out-
put of a PRNG, which still should be approximated in higher dimensions, since concurrent appli-
cations or algorithmic elements may call on sub-sequences of the generator (e.g., access every kth
output). Seeds between otherwise identical devices must differ to avoid identical random behavior
across devices and individual seeding after each device restart is desired. Even though seed require-
ments for general purposes are moderate, a “plug and play” source for gathering seed material is
missing on IoT devices that do not provide a hardware-based true random number generator.

General purpose PRNGs are essential on most IoT devices and frequently called in many use
cases. Implementations should therefore be fast and efficient to preserve resources of the con-
strained devices. Available resources are better spent on generators with high security demands.
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3.2 Cryptographically Secure PRNGs

Crypto-purpose or cryptographically secure PRNGs (CSPRNGs) are generators that are safe
to use in security applications, involving the generation of cryptographic keys, nonces, or salts.
Shamir [100] introduced the notion of a cryptographically strong PRNG that prevents computation
of a desired future output value within certain bounds of time and space complexity. Blum et
al. [21, 22] introduced cryptographically secure pseudo-random sequences that can be generated
in polynomial time, but are unpredictable. Given a preceding output sequence of that generator,
but not the seed, it must be computationally infeasible to predict the next bit of output with a better
chance than 50%. Cryptographic system security relies on these random numbers as basic input.
Consequently, CSPRNGs are expected to output highly unpredictable number sequences and to
be resilient against known attacks. The security of an implementation goes beyond the scope of
computational efforts to predict future outputs and includes countermeasures to protect against
weak implementations as well as state compromise by an attacker.

Building a crypto-purpose generator is more complex and consumes more system resources
than a general purpose PRNG. It involves additional building blocks of ciphers, cryptographic hash
functions, runtime tests, as well a specifically robust seeding logic. Computational overhead and
especially memory requirements of these building blocks are in potential conflict with resource
constraints of IoT nodes, but the availability of secure random numbers is essential for enabling
secure communication over the Internet. To reduce software complexity, some microcontrollers
provide hardware acceleration of cryptographic primitives, which should be exploited when im-
plementing the respective components.

A significant body of work reports about failures of PRNGs and successful attacks against the
random input of crypto systems [34, 35, 40, 53, 55, 92, 106]. Hence, provisioning a cryptographically
secure, consistent random infrastructure is a crucial component of a software system, which should
be designed and tested with care. Requirements on CSPRNGs, in-depth analyses of different mech-
anisms and classification of those have been presented in References [14, 16, 30, 35, 58, 92, 103].
We summarize the key aspects of CSPRNGs in the following paragraphs.

Statistical Randomness. Any statistical bias gives rise to elementary attack vectors. Even though
CSPRNGs mainly consist of deterministic algorithms, a crypto-secure random generator needs to
produce sequences that are statistically indistinguishable from truly random [55]. These properties
are based on the assumption that in a string of (pseudo-random) bits, probabilities for one and
zero are equal at any time and they are statistically independent. Even a very small bias must be
considered as potential breach of the randomness assumption and contradicts crypto-requirements
of a secure generator. A variety of statistical properties can be verified with tests that are available
in well-established test suites (see Section 5).

Unpredictability. CSPRNGs require resistance against external and internal attacks (see
Section 2). A common distinction exists between prediction resistance and backtracking resistance.
In more detail, prediction resistance means that an attacker cannot guess future results in compu-
tational time by monitoring the generator history, even if the algorithm is perfectly known. To
achieve this at a given statistical quality, the seed needs to be fully unpredictable. Furthermore,
a crypto-secure PRNGs needs to be built on cryptographic functions, usually one-way hash func-
tions and block ciphers that are practically not invertible and do not produce colliding output from
different inputs.

Every cryptographic system needs to be designed according to a specified security level. An
established threshold is 128 bits of secrecy [1, 91, 110]. Assuming an adversary had to guess a
secret value, it would require trying about half the number of bit combinations, if all states are
equally likely. For 128-bit secrecy this would be 2128−1 tries on average to brute force a collision,
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or 2128 in the worst case. This is currently considered secure for computational resources. Both
the seed at the generator input, as well as the internals of its algorithm, need to meet the expected
security level. It is important to note that due to the birthday paradox, an attack on a cryptographic
hash function can complete with a reduced number of tries [17, 45]. Furthermore, if an attacker
gained knowledge of the internal state of a generator, then it should be ensured that future output
is only predictable for a very short time. According to NIST, this should be achieved by adding fresh
and truly random values periodically to the internal generator state (see Section 3.3 on re-seeding).

Backtracking resistance protects against a reconstruction of previous values or even the seed
after a state compromise. It implies that no correlation between seeds and generated output should
be in place. This behavior is required to assure perfect forward secrecy within cryptographic pro-
tocols [51]. Backtracking resistance is realized by applying cryptographic functions to the internal
state of the generator and hardened by storing state in protected memory, if available.

High Entropy Seeding. A truly random seed value is required to make the output of a CSPRNG
unpredictable [14, 74]. Random bits are usually extracted from physical resources and the Shannon
entropy [101] or the Minimum entropy serve as a measure of its randomness. In this context, phys-
ically random resources are often referred to as entropy sources. Physical sources of “randomness”
typically exploit variations in electronic circuits (e.g., clock drifts, uninitialized memory, analog-
to-digital converter fluctuations), randomly noisy signals (e.g., wireless noise, bit errors, thermal
noise), or user input signals (e.g., key strokes, mouse clicks) that normally are unavailable in the
IoT. These real-world entropy sources, however, do not always admit “full randomness” and addi-
tional compression methods are often needed for maximizing entropy. NIST [111] also advises that
seed generation should not rely on a single entropy source, for resilience. The IRTF recently pro-
posed methods for improving randomness obtained from weak entropy sources [30]. Full entropy
seeds are required for secrecy in a CSPRNG, which is equivalent to requiring 2n−1 tries on aver-
age, for guessing a seed of length n bits. If not seeded with sufficient entropy, then an adversary
may exploit internal state collisions and determine generator output faster. This can drastically
degrade the security strength of the generator. Hence, great care must be taken to harvest the
number of entropy bits that is required by the cryptographic strength of the system as defined by
and compliant to the algorithm of the CSPRNG [123]. Caution is advised with implementations
that limit the input length of the seeding function. Fresh entropy may be required repeatedly to
re-seed the internal state of a CSPRNG to recover from a potential state compromise, or to serve
multiple generator instances, as we will discuss in the next section.

Health Testing. The quality of cryptographic system components need particular attention, as it
may degrade not only due to software bugs, but also due to hardware aging or side-channel attacks.
Most entropy sources used for (re-)seeding rely on physical processes and particularly benefit from
testing. Self-testing demands increase when physical device access is possible. A variety of tests
have been proposed by NIST, which should be executed on all functions of a PRNG and its seeder.
These tests range from known answer testing during validation time up to health tests that are
applied during runtime to monitor vitality of entropy sources as well as expected execution of
deterministic algorithms. The focus of this contribution is not on testing, and we refer the reader
to the specific NIST documents [14, 15, 111].

3.3 A Note on Re-seeding CSPRNGs

A CSPRNG can recover from potential state compromise by regular re-seeding [14, 55, 58, 123].
Re-seeding of PRNGs is often advised [38, 40, 49] but also under much debate in the literature [19,
34, 92]. Certain CSPRNGs proposed by NIST even build upon the concept of re-seeding [14].

Considering that a generator is perfectly secure and was seeded in agreement with its specified
security level, while both its seed and its state are kept in full secrecy, then an adversary cannot
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predict the next output by guessing within computational time without any re-seeding. So re-
seeding becomes unnecessary. In this ideal scenario, the only reason for re-seeding is to extend
the finite period of the specific pseudo-random algorithm. The period of a generator describes the
number of cycles it takes to run through all valid internal states. In practice, however, cryptograph-
ically secure PRNGs have long enough periods and are not affected by repeating pseudorandom
output during their lifetime in a common IoT scenario. Re-seeding can even be disadvantageous,
as it introduces an interface to inject low entropy values to the internal state during runtime. This
may foster state collisions and thus break the resilience against unpredictability.

Entropy is a fragile property that is (i) not always in place, (ii) in many cases manipulable at
physical device access, and (iii) hard to estimate during runtime. Even worse, it may be hard to de-
pict failures in case of a compromise. To avoid adding compromised entropy values during runtime,
some common security procedures base on a “trust on first use” model [36], which contradicts the
re-seeding approach.

Another vulnerability created by re-seeding was revealed by Ristenpart et al. [92]. Existing im-
plementations of entropy collectors cache their outputs in memory pools because—due to its even-
tually long and indeterministic runtime—entropy gathering is often implemented as a parallel and
asynchronous task. If these numbers are not consumed immediately, then a memory without per-
fect secrecy exposes an attack vector. Thus, entropy pools and internal states should run in trusted
execution environments, only. Especially on constrained IoT hardware, this is not always possible,
which makes the case for entropy generation on demand. Conversely, the utilization of insecure
memory technologies generally motivates re-seeding with fresh entropy values.

Entropy sources can get compromised during operation, but the opposite can happen, as well,
if sources did not provide full entropy during PRNG instantiation. In that case, mixing additional
entropy values to the internal state during operation can be rescuing. Finally, a few crypto-forums
argue that re-seeding protects in case of faulty implementations. Faulty implementations at hand,
however, contradict many assumptions of a cryptographically secure system.

In summary, there are reasons in favor and against re-seeding of PRNGs, and we argue that a
decision should be made by the designer in view of the underlying hardware capabilities, deploy-
ment constraints, application scenarios, and security requirements in place. We conclude that a
re-seeding mechanism should be considered as optional function of a CSPRNG API. This recom-
mendation applies to IoT environments that require modular software to adapt to the heterogene-
ity of hardware platforms of varying resources and diverse deployments in probably (physically)
harsh environments. These considerations, however, are not limited to resource constrained em-
bedded devices, but apply to regular computers as well.

3.4 System Components for Generating Randomness

Random numbers can be produced by hardware or software components. Combinations, in which
assisting hardware improves functionality or performance of a software generator, likewise exist.
Figure 2 presents an overview of different random sources that are commonly available on IoT
devices. The access to the different sources is unified via a “North Bound Random Access API,”
which is commonly provided by the random subsystem of an OS. It is noteworthy, though, that
these classifications also apply to ultra-constrained devices that cannot host an operating system.
Such bare metal deployments may replace the random access API dedicated driver or PRNG calls.

We distinguish between (i) unseeded generators, (ii) seeded pseudo-random number genera-
tors, and (iii) hybrid solutions. (i) includes generators of truly random numbers. Many modern
microcontrollers provide TRNGs that consist of an internal entropy source and a post-processing
hardware circuit that compresses the samples from that source. These sources can feed into the
random access API directly, even though it is debatable whether TRNGs should be deployed as
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Fig. 2. Overview of hardware and software components for generating randomness in the IoT.

an alternative to PRNGs (seeSection 9). Alternatively, external noise from sources such as thermal
noise of a resistor, jitter in free running oscillators, or uninitialized memory cells gets sampled. As
noisy data provides only few bits of entropy per sample, it needs a separate conditioning, which
can be implemented in hardware [94] or software.

The output of TRNGs or (conditioned) noise sources is best used to create start values for seeded
PRNGs. (ii) Deterministic general-purpose and crypto-secure PRNGs can be implemented in hard-
ware on the microcontroller itself or processed in software when random hardware is missing.
Software PRNGs can additionally be assisted by hardware acceleration [56], which is available for
crypto primitives on many platforms. (iii) Hybrid devices contain an entropy source and pseudo-
random hardware, which utilizes the entropy for seeding. This class of devices is composed of
dedicated crypto-chips that connect to the main processor using standard communication buses
such as I2C, SPI, or UART.

4 RANDOMNESS IN IOT OPERATING SYSTEMS

4.1 General Requirements

Many system services require access to random input, and it is common to expect a random func-
tion at the operating system level. Use cases and applications of random numbers differ largely,
though, as we discussed in Section 3. General purpose PRNGs are needed to generate random
events that follow a uniform statistical distribution and are often consumed at high frequen-
cies. Security-related contexts raise the additional requirement of keeping random output unpre-
dictable, why crypto-secure generators need to maximize entropy with the help of truly random
input. Such input is on the one hand difficult to obtain at often high cost; on the other hand, truly
random sources frequently harvest from system hardware, which is best accessed via the hardware
abstraction of an operating system.

Following this perspective, both general purpose and crypto-secure random number generation
should be part of an operating system, but are at the same time only versatile if they meet the
diverging requirements well. We argue that the different use cases and requirements of PRNGs and
CSPRNGs demand for independent methods and APIs. Isolated random functions cannot only be
specifically optimized, but also prevent side-channel attacks against the CSPRNG via the general
purpose PRNG. Furthermore, separate APIs force developers to decide for their individual use
cases.

4.2 General Purpose PRNGs

Use cases for general purpose PRNGs require statistically well distributed random sequences.
First, single applications should receive a different value out of the whole number range on each
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request to avoid repeating patterns. Second, multiple applications that request from a single PRNG
instance should experience the same properties, even if they access only every kth PRNG output.
This requires a decent empirical distribution in higher dimensions, which is often a challenge.
Security-related applications should not use this generator class, as it may be too easy to predict.
Furthermore, most go-to PRNGs are invertible, which allows to reconstructing previous sequences.
Seeds must be generated differently across devices to prevent a uniform collective behavior—a
decent entropy is desired to provide varying sequences between system restarts. Seeds may be
accessed via the hardware abstraction of the operation system, but should be configurable to ease
debugging.

General purpose PRNGs should be applicable even on very constrained devices and act frugally
while requested frequently. Efficiency metrics involve processing time, as well as energy and mem-
ory consumption. The latter can benefit from restricting state to a single PRNG instance. A central
instantiation logic can be managed by the operating system.

4.3 Crypto-secure PRNGs

Core Requirements. Security-related use cases require crypto-secure PRNGs for sovereign tasks
such as cryptographic key generation. Delicate key material must be largely unpredictable. A
CSPRNG is expected to produce sequences that are indistinguishable from truly random numbers,
as discussed in Section 3.2. It is advisable to rely on approved CSPRNG mechanisms that have been
verified by trusted authorities and an operating system or a public library can provide access to
implementations that are tested within this environment. A CSPRNG internally consists of crypto-
graphic functions [14] to achieve backtracking resistance and the maximum achievable prediction
resistance (security strength) is typically given by that function, though, the strength of the whole
generator should be specified by the designer of the approved algorithm. To assure a predefined se-
curity strength, a high-quality seed must provide truly random data with a corresponding amount
of entropy during instantiation of the CSPRNG.

In contrast to general purpose PRNGs, CSPRNGs undertake tasks like key generation, which
is typically involved less frequently, but also continuous encryption within stream ciphers, thus,
performance characteristics of CSPRNGs are important, but secondary in comparison to its secu-
rity qualifications. Still, computation of cryptographic primitives and entropy conditioning can be
costly [34], in particular on constrained embedded devices. The OS CSPRNG and its seed generator
must comply with the constraints of the target hardware and leave sufficient resources to deploy
a real-world firmware that includes a crypto-stack and the desired application logic (cf. Section 1).
The operating system should support this in an optimized, configurable environment.

Minimal Standards. Crypto-secure PRNGs rely on true random seeds that meet a security
strength that determines the required amount of entropy in the seed. At least one entropy source
must be in place that meets the requirements. The operating system should provide an entropy
interface, which grants access to true random values generated from varying sources, dependent
on underlying hardware capabilities. Externally connected devices may provide true random num-
bers as well, but typically require a device driver. An operating system can simplify access to rele-
vant components by its hardware abstraction layer and should additionally allow for code re-use
between different hardware platforms. Configurability requires a highly modular architecture. In
the context of IoT software, configuration is commonly done during compile time to keep firmware
sizes small.

Tests are mandatory for generating robust and secure random numbers [14, 111]. Both the
pseudo-random algorithm and the seeding entropy source must be tested, whereas testing pro-
cedures can be separated into a priori and live tests during deployment. Due to device constraints,
a priori tests at development time should be favored to save resources on running IoT nodes.
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Thereby, bug-free execution of the deterministic CSPRNG must be verified by comparing output
sequences against ground truth. Further, seed sources rely on physical processes and should be
evaluated within deployment conditions, because their behavior can be affected by environmental
properties.

Optional Features. Entropy sources are essential for seed creation, but the properties of un-
derlying physical processes are diverse. Environmental changes as well as attackers with device
access can affect their reliability (see Section 2). Involving multiple entropy sources during seed
creation increases seed resilience. Naturally, a physical process does not provide full entropy, but
conditioning is sometimes implemented already in hardware on the microcontroller. For sources
with sparse entropy concentration, a compression mechanism is required. An entropy module pro-
vided by the operating system can increase seed quality, and it should involve three fundamental
building blocks: (i) An estimate about the entropy amount per input that can be provided by each
source, (ii) an accumulation instance to involve multiple sources and keeps track of the amount of
accumulated entropy, and (iii) a compression mechanism to create high entropy seeds of limited
length to meet security requirement of the CSPRNG. Steps (ii) and (iii) can be combined in one
function. The entropy API should provide an interface to pass security requirements and it should
also be able to report errors back to the CSPRNG.

Re-seeding a CSPRNG is sometimes desired to recover from potential state compromise (see
Section 3.3). We argue that re-seeding should be kept optional because seed generation may drain
a significant amount of energy on every re-seed cycle. Enabling and disabling that feature should
be transparent to the application that uses the CSPRNG.

Cryptographic protocols for different purposes require to operate on individual instantiations
of a CSPRNG to prevent side-channel attacks. This affects the operating system in two ways. First,
seeding needs to be done separately for each instance—in contrast to the unified approach suitable
for general purpose PRNGs. Second, every instantiation needs its own context to be handled either
internally within the boundaries of the CSPRNG or externally, by dedicating context allocation to
the application. In both ways, the number of contexts should be kept low in an IoT OS, because
the CSPRNG state can consume much memory. It is worth noting that IoT firmware typically
avoids dynamic memory allocation, why the number of CSPRNG instantiations should be explicitly
defined during development.

The state of a generator needs protection and an operating system should involve hardware
security features, if available. In more detail, secure memory technologies can provide tamper
detection along with authorized access and recent low-power platforms even provide trusted ex-
ecutions environments (e.g., ARM TrustZone [8]) for protected code execution. CSPRNG state,
seeds, and entropy values should be uninstantiated after use to avoid leakage via side channels.
This is of particular importance when secure memory is absent. Memory erasure is commonly
done by setting buffers to zero, though, instructions to “zeroize” a buffer are often removed by
compiler optimizations, which leaves sensitive information in memory. Known solutions involve
explicit_bzero implemented by the GNU C Library, as well as service functions in cryptographic
libraries such as libsodium [66] or Monocypher [75].

Optimizing Parameters. Modern off-the-shelf IoT devices provide on-chip TRNG hardware,
which is commonly used for seeding. In addition, accelerating hardware units are often in place and
capable of processing cryptographic primitives such as ciphers and hashes. While most CSPRNG
implementations are based on a pure software solution of their internal cryptographic functions;
a transparent substitution by hardware implementations promises performance enhancements
in terms of speed and energy. The operation system can provide peripheral drivers to control
hardware accelerators and a transparent reconfiguration that accounts for hardware capabilities.
It should automatically select the most performant solution.
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Table 1. Overview of Common Open-source IoT Operating Systems and Their Support for Randomness

Operating System

Contiki-NG mbed OS FreeRTOS Zephyr Mynewt RIOT

PRNG
General-
purpose

randa

(C Library)
Xoroshiro128+ randa

(C Library)
Xoroshiro128+ randa

(C Library)
Mers. Twist.
Tiny Mers. Twist.
Xorshift(32)
Park-Miller LCG
Knuth LCG

Crypto-
purpose

✘ HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG
Hash DRBG

HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG

HMAC DRBG
CTR DRBG
Hash DRBG
SHA256PRNG
Fortuna

Entropy
Sources TRNG TRNG TRNG

Timerb
TRNG
Timer/
Counterb

TRNG TRNG
SRAM PUF
CPUIDb

Accumul. ✘ ✘ ✓ ✘ ✘ (✓)

Additional features
Ext. state ✘ ✓ ✓c ✓c ✓c ✓c

Err. interf. ✘ ✓ ✓c ✓c ✓c ✓c

HW accel. ✘ ✓ ✘ ✘ ✘ ✘

arand maps to an LCG–type PRNG in most libraries. bPredictable source that varies output between calls or devices.
cFunction or state is not exposed via an OS API.

Certain IoT boards provide an external hardware accelerator mounted on the same PCB as the
microcontroller, which is typically connected by a peripheral bus. Such devices can transparently
act as (i) a cryptographic accelerator or (ii) an alternate CSPRNG, which off-load the main processor
while enabling cryptographic applications on limited devices that cannot run CSPRNG software.

4.4 IoT Operating Systems

Currently, the most prominent open source IoT operating systems are Contiki-NG, a successor of
the original Contiki operating system [37], mbed OS [6], FreeRTOS [2], zephyr [124], Mynewt [4],
and RIOT [11], all of which implement methods to gather random numbers. In the following, we
give a brief overview about current solutions in different OSes and summarize the results in Table 1.
We further on focus on RIOT, which serves as the basis for our experiments.

Contiki-NG provides support for a few ARM Cortex-M-based microcontrollers and MSP430
platforms, although its predecessor Contiki provided support for a wider range of architectures.
Contiki-NG implements a sparse random subsystem that does not distinguish between general pur-
pose and cryptographically secure PRNGs. The random API is implemented as a wrapper around
peripheral TRNG drivers of a platform. The random interface provides a seed function that limits
the input size to an unsigned short integer but it is left unimplemented in most cases, because the
TRNG does not require a seed. In case of missing hardware random number support, the random
module falls back to the C library function rand. An entropy module for seed generation is missing.

mbed OS is the ARM operating system for processors of its Cortex-M family. mbed implements
one general purpose PRNG with an API interface to re-seed the internal state. ARM maintains the
SSL library mbed TLS [7] next to the operating system, which generates secure random numbers.
mbed TLS is portable and used in other OSs. The CSPRNG implementations include external state
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handling, re-seeding procedures, and a collection of self tests. mbed TLS implements a dedicated
module for entropy gathering, which (i) is capable of accumulating multiple entropy sources, (ii)
provides an interface to add personal entropy sources, (iii) can be used in a blocking and non-
blocking fashion until certain entropy requirements are met, (iv) distinguishes between weak and
strong entropy requirements, and (v) can be compiled with different complexity levels.

FreeRTOS is a microcontroller OS that is positioned to meet hard real-time requirements. FreeR-
TOS provides support for a wide range of platforms, including ARM Cortex-A/M devices, RISC-V,
and MSP430. The operating system uses the C library function rand() for general-purpose random
numbers. The external mbed TLS and wolfcrypt [122] security libraries are ported to FreeRTOS,
which enable three different crypto-purpose generators. A common random API is missing on the
OS level. Self tests, as well as health tests, are inherited from the respective library.

Zephyrsupports a large variety of ARM Cortex-M-based 32-bit IoT platforms as well as x86, ESP32,
ARC, NIOS II, and RISC-V-based boards. The operating system implements a PRNG for general pur-
poses and the external mbed TLS and tinycrypt [52] libraries are ported to zephyr, which include
crypto-purpose generators. A collection of tests inherited from mbed TLS and tinycrypt can be
executed on the operating system, as well as selected benchmarks.

Mynewt is an operating system that supports about 40 boards, most of which with an ARM
Cortex-M 32-bit microprocessor, but some also involve MIPS or RISC-V architectures. Similar to
Contiki-NG, it provides access to a TRNG or general purpose random numbers via the C library
function rand(). Both mbed TLS and tinycrypt are available for cryptographically secure random
number generation, but they are not accessible through an OS level random API. Selftests from
mbed TLS can be executed within the operating system, whereas tinycrypt tests are not included.

RIOT currently supports more than 200 boards involving 30 different microcontroller families
that range from 8-bit AVR devices with sparse peripherals over 16-bit MSP430 devices to 32-bit
processors of the ARM Cortex-M family or ESP32 with various MCU peripherals including dedi-
cated random hardware circuits, as well as ARM7, MIPS, and RISC-V-based microcontrollers. RIOT
implements a collection of PRNGs including ultra-lightweight general purpose algorithms as well
as crypto-secure generators. Among other embedded crypto libraries, wolfcrypt, tinycrypt, and
relic [5] run on RIOT, but external CSPRNGs are not yet integrated into the random subsystem. A
random API unifies access to pseudo-random numbers, but does not differentiate between general
purpose and crypto-secure PRNGs. A test application with user interaction via the shell allows to
evaluate vitality and basic performance metrics of a generator.

5 STATISTICAL TEST SUITES FOR RANDOM NUMBERS

The statistical quality of random sequences can be empirically analyzed with many methods
and tools that assess random properties. The NIST Statistical Test Suite (STS) [16] and the
DIEHARDER Random Number Test Suite [25] combine series of such tests. They are established
as standard tools and openly available. Both suites are based on hypothesis tests that analyze the
input against the null hypothesis of perfect randomness. This hypothesis implies that fully deter-
ministic pseudo-random sequences of ideal random properties cannot be distinguished from truly
random values. Conversely, even ideal random sources may produce sequences that appear to have
non-random properties, which occasionally lead to failures of statistical tests—usually referred to
as type-1 error.

5.1 NIST Statistical Test Suite

The NIST STS consists of 15 different test cases, some of which are executed repeatedly, leading
to a number of 188 statistics that are processed on each run. With respect to the input size recom-
mendation for each test [16], we apply the test suite version sts-2.1.2 to 100 Mbit generator output.
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Every test is repeated 100 times with 1 Mbit test sequences. A single test returns a probability value
(p-value) and it is expected to accept the hypothesis of perfect randomness with a confidence of
1 − α if the value lies above a significance level of α = 0.01. Otherwise, the hypothesis of random-
ness is rejected and the result is interpreted as failure. Each test is applied repeatedly, which results
in a vector of p-values. The proportion of passed sequences for one test is determined using the
confidence interval. As a next step, the distribution of p−values for each test is analyzed using a
chi-squared test (χ 2)-test, which outputs a second order probability value (p2-value). The test suite
defines a significance level of α2 = 0.0001 for testing this distribution.

5.2 DIEHARDER Random Number Test Suite

The DIEHARDER test suite subsumes 31 tests to analyze statistics of random input streams. These
tests are executed with varying parameters, thus, a full run calculates a total of 122 test statistics.
We apply the DIEHARDER test suite version 3.31.1 with default options to streams of raw binary
outputs. In default mode, the number of repetitions of a specific test varies between psamples in
[1, 1,000] and the sequence length is variable between tsamples in [100, 65,000,000], which de-
mands for much more random input data in comparison to the NIST STS. Repeated executions de-
liver multiple probability values (p-values) for each test, similar to the NIST tests. A Kolmogorov
Smirnov test (KS-test) is applied to test deviations from the expected distribution, which results
in a second order probability value (p2-value).

In DIEHARDER, a test passes if itsp2-value lies above a significance level ofα2 = 0.000001, below
(1 − α2), and it fails otherwise. The result is considered as weak if p2-value lies above αw = 0.005
and below (1−αw ). It is again worth noting that even truly random numbers might generate weak
results occasionally.

5.3 Other Test Suites

Donald E. Knuth was one of the pioneers who described randomness tests in early editions of The
Art of Computer Programming [59], and his tests are part of most established test suites today.

NIST released the first random number tests in 1994 within the FIPS 140-1 [78] standard, which
specified four statistical tests. In 2001, these tests were updated in FIPS 140-2 [79] with a narrowing
of the test criteria. Both documents served as predecessors for the NIST Statistical Test Suite
(STS) released in 2010, which includes all 140 FIPS test cases as a subset. The Diehard test suite
was published in 1995 by Marsaglia [68], who had been active in this field since years. The test
suite implements a collection of 18 test cases, which are a central part of the DIEHARDER test
environment, which has been developed since 2003. Both NIST STS and DIEHARDER are well
known and accepted as standard tools for statistical testing of random number generators [61, 107].

The TestU01 library [61, 62] was introduced in 2007. It includes the majority of tests from NIST
STS, Diehard, as well as additional tests proposed in literature. Its purpose is to provide an “ex-
tensive set of software tools for statistical testing of RNGs.” Reference [61], which led to a larger
variety of tests, larger sample sizes, and an extended test parametrization in comparison to the
other suites. At the core, the environment implements hypothesis tests similar to NIST STS and
DIEHARDER, but instead of rejecting a hypothesis, it simply reports p-values outside the interval
[0.001, 0.9990]. TestU01 can be executed on four complexity levels, of which the most comprehen-
sive one (BigCrush) involves up to 160 test statistics. Generation of the required amount of random
data can take a long time, in particular when generated on microcontrollers and transmitted via the
UART to feed the library. This drastically increases time requirements of the evaluation process.

A range of other test environments are less prominent in the literature. The SPRNG (Scal-
able Parallel Random Number Generators) [70] library is a tool to optimize distributed process-
ing for parallel random number generation, and it additionally contributes a few standard tests
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Table 2. Overview of the Typical On- and Off-chip IoT Hardware with Their Random
Features that We Analyze

Board Chip Entropy Source Post-processing Error Handling

ST NUCLEO-F410RB STM32F4 3 Free-running ROs
Bias Correction
+ LFSR Health Tests

Phytec IoT Kit 2 MKW22D 2 Free-running ROs LFSR Status Indication
Nordic nRF52840 DK nRF52840 Thermal Noise Bias Correction Status Indication
Zolertia RE-Mote CC2538 RF Noise (seed only) 16-Bit HWPRNG –
Atmel SAM R21 XPRO SAMD21 – – –
Arduino Mega 2560 MEGA2560 – – –

Openlabs Radio Breakout AT86RF233 RF Noise – –
Microchip
CryptoAuth XPRO-B

ATECC(5|6)08A Quantum Mechanical
Circuit Variations

FIPS HWCSPRNG Health Tests
(ATECC608A)

(Abbreviations: RO=Ring Oscillator, LFSR=Linear Feedback Shift Register, RF=Radio Frequency).

already covered by NISTS STS and DIEHARDER. The ENT test program [118] defines a small-scale
environment that executes only five statistical tests. It relies on a file-based data input, which is
not practical when huge datasets have to be analyzed. The CryptRndTest package [32] analyzes
cryptographic random numbers, focusing on high-precision floating-point numbers with lengths
larger than 64 bits. The latter is uncommon in the IoT.

6 HARDWARE-GENERATED RANDOM NUMBERS

Common off-the-shelf IoT platforms sometimes provide hardware-generated random numbers.
While some platforms implement “true random” circuits for entropy gathering on the same chip as
the CPU, others implement pseudo-random generators in hardware. Still, many microcontrollers
do not offer random hardware at all. In these cases, external components such as transceivers or
cryptographic co-processors may be connected to a bus and contribute true random numbers. As
an alternative, advanced mechanisms can extract random physical properties from manufactur-
ing variations of the microcontroller itself. In this section, we analyze typical IoT hardware plat-
forms from different manufacturers, CPU architectures, and feature sets. Results are summarized
in Table 2. We run RIOT-2020.01 as operating system with a collection of custom measurement
programs.

Both the STM32F4 [105] and MKW22D [84] chips supply a TRNG that gathers entropy from
sampling multiple free running and jittering oscillators, followed by a post processor based on
a linear shift register that ensures statistically well distributed numbers. They also cover basic
runtime health tests implemented in hardware, as proposed by NIST [111]. Although the data
sheets claim to pass the NIST statistical test suite, the manufacturer NXP recommends against its
direct use for cryptographic applications in place of an approved CSPRNG:

“It is important to note there is no known cryptographic proof showing this is a secure
method of generating random data. In fact, there may be an attack against this random
number generator if its output is used directly in a cryptographic application. The attack
is based on the linearity of the internal shift registers. Therefore, it is highly recommended
that this random data produced by this module be used as an entropy source to provide
an input seed to a NIST-approved pseudo-random-number generator based on DES or
SHA-1.”

NXP [84]
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Fig. 3. PUF SRAM random seeder integration in RIOT.

The nRF52840 by Nordic [83] implements a TRNG based on sampled thermal noise followed
by an optional post processor that reduces bias. Even though the reference manual describes the
mechanism as suitable for cryptographic purposes, our results indicate a slightly different picture
without the post processor, as we will show later in this section.

The Texas Instruments CC2538 microcontroller [108] implements a PRNG in hardware
(HWPRNG), which internally consists of a 16-bit shift register. Hence, its period is limited to
215, in contrast to TRNG peripherals of the previous microcontrollers The HWPRNG is seeded by
noise samples on the receive path of the on-chip radio. A similar approach is established on the
standalone AT86RF233 transceiver module [10], which produces all random values by observing
noise from the radio.

The ATECC508A [72] is a feature-rich cryptographic co-processor that runs a NIST-approved
CSPRNG (HWCSPRNG) combined with an internal seed that is inaccessible from the outside. Thus,
we consider it as hybrid device (cf. Section 3.4). The seed is automatically updated on every power
or sleep cycle. It can also be updated on demand. The seed is generated internally based on entropy
extraction from quantum mechanical variations of the circuitry:

“In the crypto devices, the random seed comes from variations at a quantum scale within
the device. The inherent quantum mechanical entropy of the circuitry within the device
provides a truly random seed.” Atmel [9]

Table 2 also lists the SAMD21 and the MEGA2560 microcontrollers by Atmel as examples of
the numerous off-the-shelf devices, which completely lack hardware-based random sources. This
class of devices heavily benefits from external co-processors as well as internally generated entropy
from physical resources that can seed an approved software PRNG.

6.1 SRAM PUF Seeder

Physically unclonable functions (PUFs) are one solution to generate unpredictable numbers
even without dedicated electronic circuits. They extract unique output from individual hardware
properties. Here, we focus on SRAM PUFs, because this memory technology is present on almost
all available microcontrollers. Transistor variations of memory cells lead to varying states after
device power-on. The startup state of multiple memory blocks form a device-unique pattern plus
additional noise, which can be extracted, compressed, and used as PRNG seed values [57, 60, 96,
112].

6.1.1 OS Integration. Seed Generation. The mechanism of a PUF-based seeder is visualized in
Figure 3 for the example of RIOT. It operates during system startup prior to OS kernel initialization
and reads out uninitialized SRAM cells. A PUF measurement is compressed by the lightweight DEK
hash to build a high entropy 32-bit number that seeds a PRNG during its instantiation, afterwards
in the OS startup sequence. It is noteworthy that the lightweight DEK hash is not a cryptographic

ACM Computing Surveys, Vol. 54, No. 6, Article 112. Publication date: July 2021.



112:18 P. Kietzmann et al.

Table 3. Min. Entropy and Hamming Weight
between 50 Reads of 1 kB SRAM on Five

SAMD21 MCUs (A–E) at Ambient Temperature

Device

A B C D E

(i) Entropy [%] 4.2 5.5 5.3 4.7 5.5
(ii) Weight [%] 50.7 49.5 51.3 49.8 53.1

Table 4. Fractional Hamming Distance from 50
Reads of 1 kB SRAM between Five SAMD21

MCUs at Ambient Temperature

Device Pair

A–B A–C A–D A–E

(iii) Distance [%] 49.2 49.8 50.1 50.4

function. Furthermore, 32-bit entropy is not sufficient for cryptographic use, but the mechanism
is extensible to cryptographic requirements.

Re-seed Power Cycle. Only startup state of uninitialized memory after re-powering provides
high entropy values. Either a power-off cycle or a low-power cycle without memory retention is
required to generate a new seed. Among others, the required minimum power-off time depends
on ambient conditions, age, and properties of the power source. In our experiments, an off-time of
1 sec. has proven suitable for all platforms. Schrijen et al. [98] analyze the impact of environmental
and experimental conditions on the SRAM PUF properties in greater detail.

Nevertheless, soft resets or low-power cycles with memory retention can occur and trigger the
startup routine that should not perform a new memory measurement in the absence of a power-off
cycle. For a solution, a simple soft-reset detection mechanism writes a randomly chosen marker at
a known and reserved address in the SRAM. During the subsequent startup, this memory address
is inspected and a new memory measurement is only performed if the marker has disappeared.
Otherwise, a soft-reset counter is incremented, added to the previously generated seed, and the
result is hashed again for creating a new seed value, which is then stored for the next cycle. The
last seed, as well as the soft reset counter, could be stored in protected memory for crypto-safe
operations.

6.1.2 Evaluation of the SRAM PUF Seeder. Next, we analyze SRAM properties on common off-
the-shelf microcontrollers and present results for the SAMD21 in Tables 3 and 4.

Memory Properties. As a first step, we inspect the random properties of the memory in detail. We
analyze intra- and inter-device variations between multiple PUF responses at ambient conditions.
Therefore, we calculate (i) the minimum entropy as a measure of randomness and (ii) the Hamming
weight to determine bias between multiple startups of one device as well as (iii) the fractional
Hamming distance between different device responses to quantify inter-device uniqueness. Results
for (i) and (ii) indicate existence of a relative min. entropy around 5 % and unbiased patterns. A
relative fractional distance of approximately 50 % in (iii) indicates uniqueness of device responses.

Seed Properties. For determining the proper size of memory used for seed generation, we evalu-
ate the minimum seed entropy for varying input lengths and different platforms as visualized in
Figure 4 (left). All measurements converge to approximately 31-Bit entropy with 1 kB SRAM.

Next, we test the distribution of Hamming distances between multiple generated seeds on every
device against normal distribution, using a simple KS-test. The probability function in Figure 4 in-
dicates that seed distances on all devices follow a normal distribution with an average expectation
value of 0,52, which is slightly biased by the influence of the MEGA2560 platform. Still, all four
controllers pass the test with probability values greater than 0,95, which allows to accept that they
are unique and uncorrelated.
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Fig. 4. PUF SRAM seed evaluations. Min. Entropy for varying input lengths (left) and distributions of frac-
tional Hamming distances (right).

6.2 Statistical Analysis with NIST STS

We now evaluate the statistical properties of all hardware-based random sources from Table 2 by
applying the NIST test suite. Following the input size recommendation for each test [16], we test
100 Mbit of random data. Every test is repeated 100 times, which results in 1 Mbit test sequences.
Random integers are generated on the constrained device and fed into the evaluation tool over
UART. It is worth noting that already the serial transmission of the data takes at least 45 min. with
a baud rate of 115200. This added to the randomness generation time that led to experiment times
ranging from one to over two hours per run. The experiment was executed under office conditions
at ambient temperature.

Results of the χ 2-test on the distribution of p-values are shown in Supplemental Material [A.1,
Figure 1]. All generators but the nRF52840 (w/o bias correction) and the CC2538 show good statis-
tical properties and pass the test suite. The STM32F4 indicates one failure for the Block Frequency
test that analyzes the proportion of ones in blocks of 128-bit length. A repeated experiment led to
similar results, so we consider this behavior a weakness of that TRNG.

The nRF52840 provides an optional bias correction that is applied to the sampled noise. With
enabled correction, the nRF52840 (w/bias correction) passes all statistical tests without deficits. If
the post-processor is disabled to increase performance, then it fails several of the test statistics.
As we will see later, the bias correction requires notably more system resources. We repeated the
statistical experiment with and without bias correction multiple times with similar results.

The CC2538 consists of a simple 16-bit linear shift register HWPRNG that (i) shortens the gen-
erator period (see Section 3.3) and (ii) can be attacked with sparse processing resources due to the
linearity of the internal shift registers. Correspondingly, it fails in most of the tests.

6.3 Performance Analysis

Throughput. We measure the throughput and generation time of different random sources
on the STM32F4 platform as well as the internal generators of the other devices listed in Ta-
ble 2. Our test measures the throughput as a single-threaded application that generates streams
of pseudo-random numbers continuously, and we count the number of values produced within an
interval of 10 seconds. In addition, we measure the time of a single (blocking) function call that
returns a random integer with an oscilloscope by toggling an I/O pin via direct register access
on the test device. In this way the measurement overhead remains negligible. The ATECC508A
crypto-chip always processes 32 bytes per request even if only integer values are requested.
We display rates, average processing times per random integer, and their standard deviation in
Table 5.
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Table 5. Hardware-generated Random Numbers: Throughput and Processing Time per Integer (#)

Randomness
on STM32F4

Rate
[kB/s]

Avg. time
per # [μs]

σ time
per # [μs]

Other
Platforms

Rate
[kB/s]

Avg. time
per # [μs]

σ time
per # [μs]

STM32F4 MKW22D 316 33.08 0.08
+ PUF SRAM – 296.46a 0.16 nRF52840
+ ATECC508A 3 11,609.69b 889.96 w/o correct. 15 246.04 2.25
+ AT86RF233 25 150.48 0.08 w/ correct. 6 600.28 57.03
+ TRNG 1,994 1.95 0.04 CC2538 503 6.25 0.37

aDoes not include time for power-off cycle. bATECC508A always produces 32-byte blocks.

Clearly, the PUF-based seeder as well as the externally connected devices perform two up to four
orders of magnitudes slower in comparison to the on-chip generator of the STM32F4 that returns
random values via direct register access. It is important to note that our measurements for the
SRAM-based seeder only include processing times of the generator itself that consists of the reset
detection, memory readout, and hashing to create a final random value. In practice, the required
power-off cycle as well as the OS startup are added, which can take tens to hundreds of milliseconds
and is heavily dependent on the OS configuration. However, in the all-day use of an IoT-device,
low power cycles occur repeatedly. The cryptographic co-processor ATECC508A is notably the
slowest, but it is the only candidate that runs a hardware-based cryptographically secure random
number generator. Its performance strongly relates to the mode of its device driver [73]. In our
measurements, we use the polling mode, which queries the device for the completed execution
4–7 times before random data is ready. Alternatively, in the non-polling mode, the driver waits
a maximum execution time for each command, after which the data is ready to be fetched from
the co-processor. This potentially increases execution times but leaves room for parallel processes
to be scheduled or low-power sleeping. Furthermore, the ATECC508A as well as the AT86RF233
transceiver require additional I2C/SPI transmissions in comparison to the on-chip solutions. Both
the driver overhead and the transport of random data are included in our measurements. It is
noteworthy, though, that a real-world deployment of the ATECC508A would process random data
internally, which relieves transport over the I/O interface and reduces computation demands of
software implementations in a crypto stack.

Among different MCUs on-chip generators, the STM32F4 performs fastest. Although its CPU
runs with the highest frequency (96 MHz), the processing time is not directly proportional to the
CPU speed. In comparison, the MKW22D implements a similar TRNG and runs at half the CPU
speed (48 MHz), but takes more than 10 times longer to produce a random integer value. The
CC2538 unsurprisingly operates comparably fast, as it only operates a simple shift register with-
out sampling noise. Both configurations of the nRF52840 generator indicate low throughput of
6–15 kB/s in comparison to the other generators, which presumably relates to the internal sam-
pling procedure. The bias correction leads to statistically good properties of the output sequences,
but it reduces computational speed by a factor of 2.5.

Energy Consumption. To evaluate the energy consumption of each generator, we measure the
current consumption of all hardware-based approaches with a digital sampling multimeter (Keith-
ley DMM7510 7 1/2) at 1 MS/s and we drive the board from an external regulated voltage supply. All
development boards provide a measurement header to probe the current that flows to the micro-
controller. For the externally connected devices (i.e., ATECC508A and AT86RF233), we additionally
measure the current to the power supply pin. Our energy measurements include driver overhead
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Fig. 5. Hardware-generated Random Numbers: Energy consumption of external (left) and internal on-chip
generators (right).

as well as the transmission over I2C/SPI. Measurements for the SRAM seeder include reset de-
tection, memory readout, and hashing, referring to our throughput evaluation. Measurements for
on-chip generators include associated testing overheads that are always executed, if available on
a hardware platform. Some hardware-based random generators execute at the same scale as the
sampling resolution, thus, we measure generation of 1,000 integers per run in that case and nor-
malize the cumulated values afterwards. We repeat every experiment 1,000 times. In setups that
involve external hardware, we measure the MCU and the external device separately. If applicable,
then we separate microcontroller and external device consumption in our graphs.

Figure 5 displays our test results on the energy consumption. The radio-based approach as well
as the SRAM-based seeder consume one order of magnitude more energy than the on-chip gener-
ated numbers, though, both mechanisms miss an online health testing. The ATECC508A clearly
has the highest energy footprint, which is strongly related to the device driver overhead. As de-
picted in Table 5, the co-processor requires more than 11 ms to process the next output, during
which the MCU is polling the co-processors status. While co-processing, though, the MCU is free
to process other data or to go to a deeper sleep mode for energy saving. As depicted in Figure 5, the
microcontroller consumed the larger portion of energy up to 190 μJ. Furthermore, the ATECC508A
produces a minimum of 32 random bytes per request, thus, up to eight integers can be fetched for
the same cost. It is worth noting that continuous health tests are also applied to random samples
on the external device.

The radio-based random generation is second most energy-hungry after the cryptographic co-
processor. Although this approach is 10 times faster, it only saves a factor of four in energy, which is
due to the higher current draw of approximately 12.5 mA in receive mode of the AT86RF233 during
random bit generation. The ATECC508A, however, only drives around 3 mA during operation.
Results for the SRAM-based seed generator scale similar to the radio-based approach. It is worth
noting that we only display the PUF SRAM overhead here that comes on top of a power-off cycle.
Results for on-chip generators reflect similar properties as the processing times. The consumed
energy to produce one random integer is below 3.5 uJ on all internal on-chip generators. All devices
except the CC2538 platform apply continuous health tests in the hardware. STM32F4 is notably
the most frugal competitor and reduces the consumption per integer to less than 0.35 uJ.

The difference in energy consumption of the two nRF52840 modes attains about a factor of 2.5,
which increases only slightly less than the processing times listed in Table 5. Still, bias correction
introduces a notable increase in processing time and thereby in energy consumption.

7 SOFTWARE GENERATED PSEUDO-RANDOM NUMBERS

Since von Neumann’s early work [116], the generic method of obtaining pseudo-random num-
bers builds up on some (deterministic) function that is iteratively applied to a (random) seed and
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attempts to approximate the output of uniformly distributed, independent random trials. As of to-
day, very many of such pseudo-random number generators exist, which comply to various random
quality and complexity requirements. From the perspective of an IoT operating system, we are in-
terested in two types of highly efficient, memory-strained algorithms: (i) an ultra-lightweight gen-
eral purpose PRNG and (ii) a crypto-secure PRNG that meets the resource constraints of class 1 IoT
devices. In the following, we will introduce and analyze eight popular generators—four complex
generators of high quality and four lightweight candidates for general purpose random generators
in the IoT.

We apply the NIST, DIEHARDER and the TestU01 suites to these PRNGs using RIOT as OS plat-
form. Our test programs run as RIOT native processes on Linux servers to speed up experiments.
Thereby, we seeded all generators identically, except for the CTR PRNG and the NIST Hash DRBG,
which impose specific requirements on their seeds.

7.1 Complex Generators

Fortuna.The Fortuna PRNG is considered a cryptographic random number generator (DRG.4 [58])
and was designed to overcome the demand for entropy estimators that tend to be complex and
inaccurate [38]. Internally, the Fortuna algorithm maintains pools of entropy from which a periodic
re-seeding is performed. Pools are filled from different available entropy sources, whose values are
distributed among these pools. The entropy accumulation is conducted by hashing the internal
generator state and one entropy pool at a time using a SHA-256 function. That mechanism allows
generating random sequences of unlimited period, though, it cannot overcome the requirements
for proper entropy sources for seeding the generator and for updating entropy pools. Potential
side effects of re-seeding have been discussed in Section 3.3. The final blocks of pseudo-random
output are generated by an AES-128 block cipher in counter mode.

CTR PRNG. The CTR PRNG is a cryptographic generator (DRG.4 [58]) specified and approved
by NIST [14]. It is based on a 128-bit AES block cipher in counter mode, why it provides 128-bit
security strength. For this, the generator requires seeds of at least 128 bits entropy. The tinycrypt li-
brary implementation, which we use in our subsequent evaluation, requires seeds with a minimum
length of 256 bits. This is in contrast to all other implementations presented in this section.

SHA256PRNG. The SHA256PRNG is a generator that provides cryptographically strong random
numbers (DRG.2 [58]). The original mechanism of this generator was introduced in FIPS 186–
1 [77] and analyzed by Kelsey et al. [55] and Desaj et al. [33]. Outputs are generated by hashing
the internal generator state, which is updated thereafter by a linear transformation of the hash.

SHA256PRNG is the successor of the SHA1PRNG, which became popular as the choice of the
Java SecureRandom class. Until recently, it was considered secure [42] but got deprecated in An-
droid N [3]. The reasons for deprecation mainly relate to a seeding bug in Java and to NIST dep-
recating the underlying SHA-1 hash function, because Wang et al. [104, 120] discovered an attack
that decreased the number of brute-force tries needed to foster state collisions from 280 to 263

operations. For that reason, SHA256PRNG replaces the SHA-1 output function by SHA-256.
The generator is forward-secure up to the previous-to-last value, which can be recovered from

the current generator output by inverting the state update function. SHA256PRNG is confined to a
single hash computation per block, which makes it computationally efficient. To add full forward
secrecy NIST developed a collection of improved and standardized random bit generators [14], the
deployment of which has been recommended in revisions of the FIPS 186 [80, 81] standard.

We briefly discuss results about the NIST Hash DRBG (using the SHA-256 hash) at the side. It
extends the SHA256PRNG by a cryptographic function that hashes the internal generator state to
harden backtracking resistance after state compromise. This requires two hash computations on
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each block. The NIST Hash DRBG also implements an approved re-seeding mechanism to achieve
unpredictability even after state compromise (DRG.4 [58]).

Mersenne Twister. The Mersenne Twister is a widely used generator, which in its default version
is known to be non-secure [71], even though crypto-secure variants have been explored succes-
sively. Known advantages of that algorithm are a long period and comparably fast operations,
because the generation of pseudo-random numbers avoids multiplication and division. Instead, it
requires a large internal buffer of 624 integers.

7.2 Lightweight Generators

Tiny Mersenne Twister. The Tiny Mersenne Twister is a derivate of the original Mersenne
Twister that adapts to resource constraints on the price of a narrowed scope. It heavily reduces
buffer requirements at the price of a shortened period length. The generator is rather a reduced,
memory efficient fallback solution of the full Mersenne Twister [95].

Xorshift. The Xorshift generator belongs to the family of linear-feedback shift register genera-
tors that are not cryptographically secure. It is known for its resource efficiency, as it is confined
to simple XOR and shift operations. In its simplest 32-bit state generator, we refer to it in the fol-
lowing: Marsaglia [69] proposed a collection of extended Xorshift PRNGs with an increased period
length and improved statistical properties. Vigna et al. analyzed and improved these generators fur-
ther [20, 113, 114]. We briefly discuss results about the Xorshift64* and the Xoroshiro128+ deriva-
tives at the side, which we integrated into RIOT for comparison. The Xorshift64* consists of a 64-bit
state and applies a constant multiplication to the output for bit scrambling. The Xoroshiro128+ re-
quires 128-bit state, although it only outputs 64 bit values per cycle. In contrast to Xorshift64* it
adds two consecutive state values as a nonlinear transformation to the output.

Park-Miller “Minimal Standard”. The Minimal Standard algorithm is a linear congruential
generators (LCG) and has been known for decades [86]. Motivated by its objective to design a
lightweight generator that is confined to 32-bit arithmetic without divisions, it was criticized for
its statistical properties repeatedly [121]. The generator has a period or 231 − 1, and it is limited
to produce 31 pseudo-random bits during each cycle. In RIOT, however, the API presumes 32-
bit random integers, thus, one integer is generated by combining two generator outputs on each
random request, which limits the usable period to 230 − 1. LCGs are generally not designed for
cryptographic purposes.

Knuth LCG. The Knuth LCG is a widely used linear congruential generator, which is computa-
tionally lightweight and has been examined for decades. It is implemented in a range of software
projects and the source code is available in different standard libraries such as Newlib [115] or
Musl C [76]. The generator adopts a multiplier that was obtained by Knuth [59, Chapter 3.3.2, p.
108], but current implementations differ from the “MMIX” Knuth LCG in its increment. Further-
more, it truncates the most significant bits of the 64-bit state to 32-bit output values due to known
poor statistical properties of the lower bits in modulo-2 generators [67].

7.3 Statistical Analysis with NIST STS

Our first statistical analysis applies the NIST STS test suite to these generators. The results of the
χ 2-test are shown in Supplemental Material [B.1, Figure 2]. Analog to Section 6.2, tests are only
passed after a significant proportion of repeated successful runs; that is, 96 successful results for
a sample size of 100 sequences. Test 11 and Test 12 (Random Excursions and Random Excursions
Variant), however, are not always applicable and as such they reduce the sample size internally. In
our configuration, this led to proportions of sequences passing one of both tests in ranges from
53/56 to 67/71 in different PRNG measurements.
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All generators except for the Xorshift pass all 15 statistical NIST tests. Xorshift flaws in the Rank
(Binary Matrix Rank) test. This test analyzes linear dependences among substrings of a sequence.
In our case, all 100 test sequences fail already the first order hypothesis test and thus, the χ 2-
distributions test fails in consequence. We consider this an algorithmik weakness. The deficit is
fixed by the extensions applied to Xorshift64* and Xoroshiro128+, which pass all tests.

The Frequency Test on the Mersenne Twister had a very small p-value on the first run (not
displayed here) and we ran the same test again with altered seed value during initialization. We
want to stress that the magnitude of a p-value in hypothesis testing is not a causal measure of
quality. This means that a lowp-value confirms to reject a null hypothesis (sequence is not random)
but it does not claim how likely it is that the alternative hypothesis is true (sequence is random). For
further interpretation of statistical tests, we refer the reader to the NIST test suite description [16]
and work by Greenland et al. [47].

7.4 Statistical Analysis with DIEHARDER

Next, we apply the DIEHARDER test suite to our random generator candidates. DIEHARDER test
values behave similar to the NIST STS results presented in the previous section, but procedures
are more demanding and failures are more distinctive.

Results of the Kolmogorov-Smirnov test for each PRNG in RIOT are displayed in Supplemental
Material [B.2, Figure 3]. All complex generators (i.e., Fortuna, CTR PRNG, SHA256PRNG, and
Mersenne Twister) pass all tests. One test returns weak results, which is expected in 1% of the test
cases due to the uniform distribution of p-values. The DIEHARDER help page [24] recommends
repeated test executions and analysis of p-value histograms on weak results. All weak results
passed a repeated experiment run with a different seed.

Several failures must be observed for the lightweight generators (i.e., Tiny Mersenne Twister,
Xorshift, Minimal Standard, Knuth LCG). The Tiny Mersenne Twister fails Tests OQSO (Overlap-
ping Quadruples Sparse Occupancy Test) and the DNA test, which both examine the distribution
of overlapping substrings in a stream of random integer values. These results indicate a systematic
problem of the generator. The Xorshift generator fails the Monobit 2 test, the 32x32 Binary Rank
test, and the Count the 1s Stream test. The Monobit 2 is a derivate of the NIST Frequency test and
measures the proportion of zeros and ones within blocks (12-bit blocks applied here). Surprisingly,
the general Monobit test, which counts “1” bits in a long sequence of random samples (100,000
samples considered here) does not fail. Hence, the Xorshift introduces bias within smaller sub-
blocks, which is compensated over the whole sequence. Results persist after repeated experiment
executions with different seeds. Failing on the matrix rank test was expected, as the equivalent
from the NIST STS already failed in a similar configuration. The Count the 1s Stream Test exam-
ines whether the distribution of ones in a stream of bytes matches that of uniform random bytes
(Binomial(8, 0.5)). Failures indicate that Xorshift output streams produce repeated “words” that
appear with pronounced probability. It is likely that the same effect led to bad results of the linear
dependency test among sub-matrices. The advanced Xorshift64* and Xoroshiro128+ generators
pass all DIEHARDER tests.

The Minimal Standard generator fails the Bitstream and the Generalized Minimum Distance
test. The first successively analyzes overlapping 20-bit tuples (220 possible words) and tests the
statistic of missing words for a normal distribution. Failing this test indicates recurrence of pat-
terns with enhanced probability. The second test places random pairs of points in a square and
tests its squared distances for an exponential distribution. The Minimal Standard generator fails
to produce outputs that appear independent in this dimension. Finally, this generator issues a sus-
piciously high number of weak test results. For further interpretation of test results, we refer to
the DIEHARDER Test Suite description [25].
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Table 6. Summary of Test Results from the “BigCrush” of the TestU01 Environment

Generator Fortuna CTR
PRNG

SHA256
PRNG

Mersenne
Twister

Tiny Mers.
Twist.

Xorshift Minimal
Standard

Knuth
LCG

Failures 1/160 0/160 0/160 2/160 13/160 58/160 71/160 9/160

7.5 Statistical Analysis with TestU01

We additionally apply the “BigCrush” from the TestU01 test suite to all software generators. Table 6
summarizes test results with failures reflecting the number of reported test statistics with p-values
outside the confidence interval [0.001, 0.9990].

Results reflect a similar picture as depicted by NIST and DIEHARDER. TestU01, though, stresses
more failures due to a higher number of tests and tighter hypothesis criteria. According to
L’Ecuyer et al. [61], p-values outside the significance interval are obtained approximately 2% of
the time, even if the PRNG behaves well. This, however, should not reoccur systematically.

The Minimal Standard misses almost half of all tests (45%), and the Xorshift fails a surprisingly
high number of 58 tests (35%), which reduces to 1–2 failures for its enhanced derivatives Xorshift64*
and Xoroshiro128+. The Tiny Mersenne Twisters attains a failure rate of 8%, which still exceeds
the acceptable rate by a factor of four, whereas the Knuth LCG performs notably better, failing
about 5% of the test statistics.

For the Mersenne Twister, both failures have a p-value of more than (1 − 10−15), which signifi-
cantly misses the acceptance interval, and unacceptable results reappear in repeated experiments
with different start values. This indicates systematic weaknesses. In contrast, all CSPRNGs report
zero or singular failures based on p-values at the order of 10−4, which disappear for repeated tests.

7.6 Performance Analysis

In the constrained IoT, an important dimension for any base system primitive lies in its perfor-
mance. To assess the value of the different random number generators, we measure the computa-
tional speed, the memory overhead, and the energy consumption of all pseudo-random number
generators. Thereby, we consider base mechanisms, and we disable re-seeding, if available.

Throughput. We measure the throughput and speed of each generator on the STM32F4 hard-
ware platform that has been introduced in Section 6. Our test applications are implemented like
presented in Section 6.3. In addition, we display maximum values for cases in which a generator
occasionally takes significant time to rebuild its internal state. Results are summarized in Table 7.

Naturally, the four lightweight generators are fastest. They can reliably compute a random num-
ber in less than a microsecond. The two ultra-lightweight algorithms Knuth LCG and Xorshift can
even produce several numbers per microsecond on the constrained microcontroller, which must
be considered a very low runtime overhead. With a production rate of more than five MB/s, these
generators could seamlessly support a stream cipher if they were cryptographically secure. Unfor-
tunately they are not, but showed some weaknesses in statistical tests as discussed in the previous
section. Xorshift clearly has the highest throughput. Its derivatives Xorshift64+ and Xoroshiro128+
perform around 2–3 times slower.

From the complex generators, SHA256PRNG and the Mersenne Twister are presented with addi-
tional maximal values in processing time. For SHA256PRNG this is due to the algorithmic property
of producing 32 bytes in one hash call, which thereafter are split into 8-byte long integer values.
Hence, a hash value is computed only every fifth call, which then takes significantly longer. The
Mersenne Twister follows a similar approach, although it does not involve cryptographic functions.
At the initialization and every 624 calls, it generates 624 fresh pseudo-random integers, which takes
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Table 7. PRNG Throughput and Processing Time per
Integer (#) Measured on STM32F4

Generator
Rate

[kB/s]
Avg. time
per # [μs]

Max. time
per # [μs]

Fortuna 44 87.50 –
CTR PRNG 102 442.01a –
SHA256PRNG 393 10.04 69.60
Mersenne Twister 3,605 0.85 189.20
Tiny Mers. Twist. 4,807 0.62 –
Xorshift 8,152 0.28 –
Minimal Standard 3,348 0.98 –
Knuth LCG 6,147 0.44 –

aCTR PRNG calculates at least one AES-128 cipher per call.
Fig. 6. PRNG energy consumption per integer
measured on a STM32F4 microcontroller.

up to 190 μs. This is orders of magnitude longer than simply returning a value from its buffer. This
notably degrades its performance in comparison with the other lightweight generators.

The three cryptographically secure generators Fortuna, CTR PRNG, and SHA256PRNG operate
more than one order of magnitude slower than the general purpose counterparts. All algorithms
involve cryptographic functions (AES-128, SHA-256), which are computationally expensive on con-
strained microcontrollers. Clearly, the SHA256PRNG is the most vital among all crpyto-generators
presented, requiring around 70 μs on every hash computation, which leads to an average time of
10 μs per integer with number caching and a rate of almost 400 kB/s. The more advanced NIST
Hash DRBG (SHA-256) doubles the time per integer due to additional hash computation in the
feedback path. The implementation, however, does not allow number caching. This overhead is
compensated while requesting larger random blocks or streams, because state updates only occur
once after each API call, while generating large outputs requires multiple hashing. In comparison
to SHA256PRNG, the CTR PRNG generates random 4 times slower in a stream of numbers, whereas
returning one random integer takes between 6 and 30 times longer. The CTR PRNG, however, has
an almost constant runtime per integer. It is noteworthy that up to 16 bytes can be obtained by
the CTR PRNG without runtime overhead, because this generator computes one AES-128 block
on every call that delivers 128 bits from which four 32-bit integers can be created. The Fortuna
operates slowest when requesting continuous random data and it halves the throughput of the
CTR PRNG. It has a constant runtime per integer of less than 90 μs, which, however, is faster by
a factor of five than the CTR PRNG. It requires approximately 120% of time as the SHA256PRNG
when processing a new hash internally (every eighth call), why the rate is less by a factor of
almost 10.

The different design choices between SHA256PRNG and CTR PRNG relate to security implica-
tions. Holding a precomputed hash value in RAM, as SHA256PRNG does, while only one integer
is requested may violate security requirements. In the presence of protected memory, a generator
could secure its state and its cached numbers to reduce the attack surface. Low-cost devices often
lack memory protection mechanisms and as such, a design might be favored that avoids keeping
sensitive data in memory for longer intervals to prevent (i) manipulation of future output (see
Section 2) as well as (ii) predicting future random numbers (see Section 3). In the presence of fre-
quent re-seeding from fresh entropy, the generator state becomes less sensitive to memory attacks.
In contrast, the purpose of caching is performance enhancement and random numbers would be
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Fig. 7. PRNG memory overhead in ROM (left) and RAM (right) measured on the STM32F4 microcontroller.
“Dep.” denotes memory requirements of dependent software modules (i.e., hashes, ciphers) that a generator
may include.

simply returned without update after re-seeding. Still, the performance per integer request of the
CTR PRNG would notably benefit from a caching mechanism.

Memory Overhead. Memory is a particular scarce resource on IoT devices, why memory of
random number generators should have the lowest possible footprint. We evaluate the memory
overhead, which comes on top of a minimal RIOT build while enabling different PRNGs at compile
time for the target STM32F4 MCU in Figure 7. Numbers are differentiated w.r.t. RAM and ROM
memory. Furthermore, crypto-purpose generators include dependencies such as hash functions
and ciphers, which are highlighted as “RAM/ROM Dep.”

Results reassure the unsurprising previous observation that complexity of the PRNGs correlates
with resource consumption. Similar to the throughput measurements, Xorshift, Minimal Standard,
and Knuth LCG generators remain most frugal in memory and only require around 100 bytes ad-
ditional ROM and few additional bytes in RAM. The internal state size (32 bits), i.e., 4 bytes in
RAM suffice for the Xorshift, whereas the Knuth LCG adds an internal multiplier to a total of 8
bytes RAM. Similarly, Xorshift64* has an 8-byte state, but it requires additional memory to split
and buffer 8 bytes generated on each cycle into two 32-bit integers. In total, Xorshift64* allocates
20 bytes RAM and Xoroshiro128+ allocates 28 bytes. The Xorshift-derivatives hence operate on a
different scale than the ultra-lightweight alternatives. Both Mersenne Twisters allocate between
250–300 bytes in ROM, whereby the “tiny” version surprisingly requires the higher amount. The
Mersenne Twister is comparably RAM intensive by allocating up to 2.5 kB, which is mainly used
for its buffer of 624 integers.

Crypto-secure PRNGs such as SHA256PRNG and CTR PRNG are rather efficient in RAM when
compared to the Mersenne Twister, but are more demanding in ROM memory. This is mainly due
to its dependent cryptographic functions. The NIST Hash DRBG (SHA-256) uses RAM similar to
the SHA256PRNG but it requires additional 800 bytes ROM. The reasons relate to its extra logic in
the state update function as well as its re-seeding capabilities. The most demanding generator in
terms of ROM memory is the Fortuna due to its dependencies to multiple cryptographic functions.
It includes the SHA-256 and the AES-128 RIOT modules, which is the main source of high ROM
requirement. Furthermore, the Fortuna internally implements an entropy pool that by default ini-
tializes 32 SHA-256 contexts, one of which requires 104 bytes. This is the main reason for its high
RAM consumption of around 3.5 kB. Here it must be stressed that this already consumes 10% of
the available memory on the test device, or 44% on an Arduino Mega 2560.
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Energy Consumption. We evaluate the energy consumption with the same setup as described in
Section 6. Figure 6 displays the energy consumed by each pseudo-random generators in RIOT,
measured on the STM32F4 platform. The Fortuna, CTR PRNG, and the SHA256PRNG crypto-
purpose generators are most expensive in energy—up to several micro Joule per integer. Thereby,
SHA256PRNG operates at the lower end and the SHA256-based NIST Hash DRBG consumes about
twice as much. The CTR PRNG notably demands maximal resources. Using approximately 24 μJ,
it drains a factor of 3.7 more energy than the Fortuna. The CTR PRNG generates four integers in
one call, why it outperforms the Fortuna slightly in a stream of random numbers.

All other PRNGs operate on the same scale as the on-chip TRNG on that device (compare
Figure 5), which takes approximately 0.03 μJ. Non-cryptographic generators remain by a factor
of 20–100 below the most efficient cryptographic generator SHA256PRNG. The most resource-
friendly general-purpose PRNGs are the Xorshift with an average of 0.01 μJ and the Knuth LCG
with 0.02 μJ per integer, which is in agreement with our findings from throughput measure-
ments in Table 7. The enhanced Xorshift64* and Xoroshiro128+ consume 3–4 times more energy
than their lightweight 32-bit Xorshift companion, which is a notable increase over the Knuth
LCG.

7.7 Recommendations on PRNGs

Having examined 11 widely available software-PRNGs (8 algorithms plus 3 variants) that cover the
basic levels and functions, we are now ready to make the choice of recommendation for random
number generators to be included in a constrained IoT operating system. Following the previous
discussion in Section 4, we differentiate our selections in one general purpose and one crypto-
secure PRNG as two different system functions.

General Purpose Generator. The general purpose generator should be very lightweight, while
complying with common statistical requirements. It should run seamlessly on very constrained
8-bit microcontrollers at low energy costs.

From the two ultra-lightweight generators, only the Knuth LCG passes all NIST and
DIEHARDER statistical tests. It performs second best. The Xorshift generator consumes about half
of its resources, but has notable statistical flaws. The Knuth LCG produces better output sequences
while being similarly fast. The enhanced Xorshift64* or Xoroshiro128+ generators exceed resource
consumption of the Knuth LCG significantly. All other lightweight generators admit lower statisti-
cal quality at higher cost. We therefore recommend the Knuth LCG to be used as general-purpose,
non-cryptographic PRNG in the constrained IoT.

Crypto-secure Generator. The Fortuna, SHA256PRNG (NIST Hash DRBG ), and CTR PRNG are
the only candidates for a CSPRNG, as they are constructed from secure and non-invertible cryp-
tographic functions. Table 8 summarizes the security properties and performance and illustrates
the design tradeoffs as a basis of our recommendation.

The CRPRNGs pass all statistical tests (including BigCrush) and fulfill the requirements of un-
predictability and brute-force resistance. Perfect forward and backward secrecy after a state com-
promise is assured by the Fortuna, CTR PRNG, and the NIST Hash DRBG based on their one-way
nature during state update in combination with re-seeding. The SHA256PRNG holds a (linear com-
bination of) the previous-to-last state and thus only guarantees forward secrecy for earlier values
due to its secure one-way SHA-256 output function (cf. Reference [55]). Backward secrecy can be
added by re-seeding on demand to all generators, as discussed in Section 3.3, using predefined
interfaces to entropy sources.

The SHA-256 generator stands out, as it is the only cryptographically secure algorithm that
attains moderate performance values. All competitors exceed the SHA-256 performance measures
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Table 8. Summary of the Security Properties vs. Performance Tradeoffs for CSPRNGs

Security Properties Performance

Generator Statistic Forward Backward Runtime ROM RAM Energy

Fortuna ✓ ✓ ✚ → ↑ ↑ →
CTR PRNG ✓ ✓ ✚ ↑ → → ↑
SHA256PRNG ✓ ✓a ✚ ↓ → → ↓

Backward secrecy can be enabled with external entropy source (✚). Resource consumption is high ( ↑),
medium (→), or low (↓). a Previous-to-last random value not protected by forward secrecy.

by one order of magnitude in at least one dimension. We conclude that the resource frugality
in combination with modular cryptographic robustness justify to commend SHA256PRNG as the
CSPRNG in the constrained IoT.

8 RANDOM NUMBERS ON AI PLATFORMS

Machine learning and other algorithms of AI recently gained attention and are considered for
deployment at the IoT Edge. They shall serve use cases such as voice recognition, object counting,
or anomaly detection. Machine learning, in particular reinforcement learning, makes heavy use of
random numbers, since randomized algorithms (e.g., Monte-Carlo methods [87]) are involved to
explore state spaces. Software libraries for machine learning evolve and exist already, optimized
for constrained embedded devices [13, 31].

High processing demands triggered a new set of hardware platforms to facilitate computation
of AI algorithms at minimal energy consumption. A common approach is represented by dual
core SoCs and hardware accelerators to offload the main CPU from processing. We identified the
following three categories in the data sheets: signal processors, neural network accelerators, and
tailored hardware engines for assisted audio-video processing. Commercial products are largely
based on ARM Cortex-M processors with a proprietary instruction set architecture (ISA). The
academic community introduced a series of open source RISC-V processors that vary with dedi-
cated purposes while targeting low energy consumption [97]. Parallel ultra low power (PULP)
processors feature an optimized processor design. Multiple cores can be clustered and share a
coarse-grained memory architecture, the instruction cache, and peripherals. Energy efficiency is
achieved by speedup after parallelization and operating the cores “near threshold” by applying
voltage and frequency gating [43]. This extends utility in the contexts of signal-, neural network-,
or audio-video processors. PULP clusters can be augmented [28] by cryptographic hardware en-
gines to facilitate low-overhead encryption of network traffic or by convolution engines.

The modular design and performance of these novel RISC-V-based processors have been ana-
lyzed and simulated by De Giovanni et al. [44]. They observe a speedup factor of five and energy
savings of 40% for an 8-core PULP cluster over a single core. Additional hardware acceleration de-
creases energy consumption down to 50%. Their findings are in agreement with Wang et al. [119],
who analyzed neural network inference on constrained IoT devices. They compare the processing
overhead and energy consumption of a machine learning algorithm running on an off-the-shelf
ARM Cortex-M4 node and two optimized RISC-V platforms, one single-core (RI5CY) and one 8-
core cluster of RI5CY processors (Mr. Wolf IoT processor [88] for high processing demands). Their
results indicate that RI5CY outperforms Cortex-M by a factor of up to 1.3 for fixed point integer
arithmetics. The neural network use case provides a speedup of six times and reduces the energy
consumption by up to 70% on the multi-core platform in comparison with a single-core Cortex-M4
operation.
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Table 9. Overview of the Different Processor Cores on the RV32M1 Microcontroller

Processor Core
Instr. Set

Architecture
Pipelining
[# stages]

Special Features

ZERO-RISCY RV32-IECM 2
Area optimized (2.2× smaller than RI5CY)
Energy boost for mixed control/arithmetic code

RI5CY RV32-I(F)CM 4

Post-incrementing load and stores
Single-cycle multiply-add & ALU extensions
Auto increment hardware loops
Memory protection unit

ARM Cortex-M4F ARMv7E-M 3
Branch speculation engine
Single-cycle multiply-add extension
Memory protection unit

It runs at 48 MHz and provides 384 kB RAM, 1.2 MB internal and 4.0 MB external flash memory. The naming scheme
IEFCM resolves to the following architectural components. I: base integer instruction set, E: embedded base integer
instruction set, F: single precision floating point extension, C: extensions for compressed instructions, M: integer
multiplication and division extension.

The shift of computational complexity towards edge devices imposes new requirements on
the random number generation. The rate of statistical (pseudo-)random numbers consumed at
low-end edge devices increases, whereas crypto-secure random generation remains unaffected by
this paradigmatic shift. Conversely, new AI platform architectures may counter these increased
demands.

We evaluate different pseudo-random number generators (cf. Section 7) on two single-core RISC-
V-based processors of the PULP family and compare the performance to an off-the-shelf ARM
Cortex-M core. Table 9 summarizes the hardware properties of our reference platform: The VE-
GAboard [85] holds multiple cores on the RV32M1 chip, which it can operate independently. We
use this platform to compare ARM and RISC-V properties. In terms of processor complexity and
application targets, the ZERO-RISCY [89] is on par with a Cortex-M0+ processor, while RI5CY [90]
is on par with Cortex-M4. All four cores operate at the same CPU frequency and share memory
as well as peripherals, which includes a TRNG.

Table 10 presents our measurement results running five non-crypto PRNGs on three cores of
the VEGAboard platform, as well as the embedded TRNG. The pseudo-random number through-
put ranges from 1,000–6,000 kB/s on ZERO-RISCY, and RI5CY speeds up by a factor of 1.1–1.4,
which is achieved by additional hardware extensions of the processor. The Cortex-M4 increases
performance of PRNGs that involve multiple XOR operations (Xorshift, Mersenne Twister), though,
RI5CY outperforms the Cortex-M4 by 10% for the others, making effect of the ALU extensions and
hardware loops.

Energy demands reflect similar properties with ≈ 20 nJ consumption on both RI5CY and Cortex
M4 while operating the recommended Knuth LCG. The fastest PRNG Xorshift is content with
10 nJ per integer on the Cortex-M4, which is only 75% of the RI5CY consumption. The TRNG
performance operates at the lower end compared to other hardware-generated random numbers
(Section 6.3), however, it should be involved only for seeding.

Despite small variations, the performance of random number generation on a single core scales
similarly to our measurements presented in Section 7.6, regardless of the processor architecture.
Our measurements are also in rough agreement with the single-core results presented by Wang
et al. [119], who found a speedup factor of 1.3 for RI5CY over Cortex-M, operating neural networks.
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Table 10. Throughput and Energy Consumption per Integer (#) for Non-crypto PRNGs Running on Three
Different Processor Cores of the VEGAboard

Byte rate [kB/s] Average energy per # [nJ]a

Generator ZERO-RISCY RI5CY Cortex-M4 ZERO-RISCY RI5CY Cortex-M4

Mersenne Twister 1,118 1,527 2,290 79.5 60.3 43.3
Tiny Mers. Twist. 2,158 2,935 2,608 49.3 36.7 39.4
Xorshift 5,869 6,264 7,227 14.8 13.2 10.9
Minimal Standard 1,715 2,331 2,134 61.9 46.9 50.9
Knuth LCG 3,682 4,697 4,581 26.3 20.2 20.2

TRNG 2.4·10−2 2.1·106

aStandard deviations are low for PRNGs (σ < 1.5%) and high for the TNRG (σ ≈ 22%).

For multi-core processors, we expect the same upscale to hold and ≈ 6× speedup with about 50–
70% energy savings for pseudo-random number generation. In the context of machine learning at
the edge, random input can be parallelized with these concurrent hardware architectures, which
addresses high processing requirements at low energy consumption.

As an alternative, Forooghifar et al. [39] introduce “self-awareness” as an architecture-
independent solution to improve nodal lifetime when operating machine learning at the edge.
Complex computations are outsourced from battery driven nodes and distributed between the
edge, fog, and cloud, following an energy estimation on the constrained node.

Processing demands for AI are and will continue to be costly on IoT edge devices. In contrast,
many simple sensor nodes will commonly process only little data and require only a single pro-
cessor. Consequently, performance enhancements of a targeted AI hardware platform will enfold
limited impact in conventional IoT use cases, as indicated by our measurement results.

9 DISCUSSION: HARDWARE OR SOFTWARE FOR RANDOMNESS IN THE IOT?

An increasing number of embedded controllers is expected to provide hardware primitives for ba-
sic cryptographic operations in the near future, which bring promise of fast and efficient random
generators and contribute real entropy. The performance of on-chip hardware-based random num-
ber generators, however, is heterogeneous. Some devices operate fast and save battery resources
(i.e., STM32F4), while others are slow and require notably larger amounts of energy (i.e., nRF52840)
than corresponding software. As shown in Section 6, few devices even produce poor statistical
output (i.e., CC2538). Some manufacturers advise against an immediate use for cryptographic ran-
dom number. Other manufacturers describe their on-chip random number generators as suitable
for cryptographic purposes without providing a cryptographic proof (Nordic). Truly random gen-
erators rely on real entropy from a physical process. This may be influenced by environmental
factors, which opens an attack surface.

Common IoT operating system such as RIOT need to make decisions on which hardware func-
tions to include and how to integrate hardware and software components into the random sub-
system. These multi-platform multi-purpose systems want to provide an overall lean solution of
reliable quality at a predictable performance. To aid this design process, we now analyze key per-
formance properties of the different hardware- and software-based random number generators
that are either unseeded (TRNG), seeded ((CS)PRNG), or hybrid.

In Figure 8, we compare energy consumption and average runtime per integer (left) as well
as the average current flow (right) for the hardware systems summarized in Table 2. Software
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Fig. 8. Average energy consumption over average time (left) and average current draw (right) for hardware-
and software-generated random integers.

PRNGs are measured on the STM32F4 board. We observe that the lightweight software generators
are fastest and consume the least energy together with the TRNG on the chip of STM32F4 . While
software PRNGs operate up to five times faster, they charge a higher current than the TRNG, which
results in a similar energy footprint. On-chip hardware generators on the CC2328 (HWPRNG) and
MKW22D (TRNG) devices consume about one order of magnitude more time and energy. Hence,
we argue for the choice of a lightweight software generator (i.e., the Knuth LCG) for the regular
production of random numbers. Hardware generators are best used for (re-)seeding, when true
entropy is required.

Running a cryptographically secure generator demands unsurprisingly more energy resources
in comparison to its lightweight PRNG alternatives or the STM32F4 on-chip TRNG. Among the
three software CSPRNGs, SHA256PRNG is clearly most frugal with an energy consumption of
0.5 μJ for one integer and an average current consumption of 17 mA. Note that caching is involved
here, thus, only every eighth requested integer involves computation of a new hash, which then
causes currents up to 20 mA. Fortuna and CTR PRNG drain notably more energy in comparison to
the SHA256PRNG, as already visible in the previous analysis. CTR PRNG consumes up to 24 μJ
for one integer, which is four times more than Fortuna, even though its average current con-
sumption is similar to the SHA256PRNG that uses 5 mA less than Fortuna. The increased energy
consumption for one integer may be compensated in a stream or by caching intermediate num-
bers. Hardware-based random numbers on the nRF52840 controller consume energy similar to the
CSPRNGs, although the low-power MCU drains less than 5 mA in both operation modes (w/ and
w/o bias correction). This is due to its slow operation.

The external ATECC508A chip, which implements an approved HWCSPRNG with seeding in
hardware, exhibits a worse performance than all software CSPRNGs. The throughput of the soft-
ware solutions is 20–100 times higher while the energy consumption remains 3–10 times less. The
average current of the ATECC508A solution remains small in comparison to the software solutions
that do not have to power a second device. This is because the main controller idles while the ex-
ternal chip processes random values. The external chip requires only a small current, as shown in
Section 6.3. Eventually, the total energy consumption can be improved by further driver optimiza-
tions. A minimum of 280 μJ is required to request from one up to eight integers. It is noteworthy
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that this chip implements secure seeding on its own, which enhances very constrained devices
without proper entropy sources. Furthermore, it implements tamper detection in hardware that
provides additional protection against side-channel attacks with physical device access.

Memory limitations of very constrained devices (e.g., ATmega2560 with only 8 kB RAM and
256 kB Flash) are unable to run complex software CSPRNGs due to memory constraints. The For-
tuna CSPRNG requires almost 50% of the ATmega2560 RAM, leaving only 4 kB for firmware and the
remaining security protocols, which is insufficient for real-world IoT-networking applications [11].
Instead, the device driver for the ATECC508A chip can be included, which (i) reduces memory re-
quirements of cryptographic functions, (ii) offloads processing of complex algorithms on the device,
and (iii) includes additional crypto-related features.

Next to the dedicated crypto-chip, other external randomness generators, namely, the
AT86RF233 transceiver as well as the SRAM PUF are energy-expensive using up to one order of
magnitude more than the SHA256PRNG. Both mechanisms, though, are not designed to be used
periodically. Instead, they act as seed sources that are utilized once during instantiation of a PRNG
and on re-seeding. The current consumption differs notably between the transceiver and the PUF
SRAM. The transceiver powers two devices in active mode, because the MCU polls random bytes
via the SPI while the radio needs to stay in receive mode. This draws a current of up to 26 mA in
total. The PUF SRAM, however, takes twice as long to retrieve a high entropy integer but it drains
less than 10 mA on average. As depicted in Section 6.1, this procedure needs to take place very
early on startup—even before clock and bus initialization in the operating system.

In summary, we argue that seeded pseudo-random number generators—a lightweight general
purpose PRNG or an approved CSPRNG—are the preferable solution for producing (secure) ran-
dom numbers. Co-processors and external hardware assistance are vital for adding entropy and can
help to reduce memory footprints for tiny devices. They lead to a decreased throughput, though,
when compared to software that runs on the main controller. Conversely, special crypto-chips can
offload processing demands from the main controller. Transceivers as well as uninitialized SRAM
are essential on devices lacking TRNGs. Even though PUF SRAM and the radio-based entropy
sources are costly, they uniquely contribute entropy and are rarely needed for seeding purposes.

10 CONCLUSIONS AND OUTLOOK

In this article, we explored the building blocks for randomness in the constrained Internet of
Things: hardware and software components that generate statistical randomness, entropy, and
resilience against cryptographic attacks. We systematically derived the requirements for IoT ran-
dom subsystems from the perspectives of statistics, security, and operating system integration. An
extensive, comparative evaluation using several prominent test suites as well as detailed perfor-
mance measurements on popular devices delivered insights into the overall quality and suitability
of the different components under test. This work derives four major recommendations:

(1) Separate general purpose random generators from cryptographically secure generators on
the OS level. Avoid any mixture or interference between the two.

(2) Prefer (software) PRNGs over random hardware, as they are more efficient and reliable. Ex-
ploit hardware components as additional entropy sources for (re-)seeding or when CSPRNG
operation is infeasible on a constrained node.

(3) The Knuth LCG is the most efficient general purpose generator that provides decent statis-
tical quality. It is simple and lean enough to run on very constrained devices.

(4) We recommend SHA256PRNG as a cryptographically secure generator, since it outperforms
its competitors by an order of magnitude in several dimensions.

With this work, we hope to contribute to a thoughtful development toward a secure Internet of
Things. This will be of particular importance, as more and more (sensitive) data originates from
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IoT nodes and needs protection. Content object security with OSCORE [48, 99] and LAKE [117],
for example, will facilitate the encryption of individual information units, but will extend the use
of cryptographic primitives such as random numbers during operation.
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A HARDWARE-GENERATED RANDOM NUMBERS

A.1 Statistical Analysis with NIST STS

Results of the χ 2-test on the distribution of p-values are shown in Figure 1. Certain tests produce
multiple p2-values and we show the average in that case. We display passing tests with gray bars,
and we highlight failed tests The test suite additionally calculates a proportion of passed test runs
and evaluates its significance. Passing tests in Figure 1 have a significant proportion within the
confidence interval calculated from α = 0.01. with hatched red bars or red arrows in case that the
p2-value is too small to be displayed. Details are discussed in the main article [Section 6.2].
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Fig. 1. Hardware-generated random numbers: χ2-test results on the distribution of probability values from
15 NIST STS tests. p2-values ≥ 0.0001 pass the hypothesis of uniformity.
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B SOFTWARE-GENERATED PSEUDO-RANDOM NUMBERS

B.1 Statistical Analysis with NIST STS

The results of the χ 2-test are shown in Figure 2. We display average p2-values, where applicable.
Details are discussed in the main article [Section 7.3].

Fig. 2. Pseudo random numbers: χ2-test results on the distribution of probability values from 15 NIST STS
tests. p2-values≥ 10−4 pass the hypothesis of uniformity.
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B.2 Statistical Analysis with DIEHARDER

Results of the Kolmogorov-Smirnov test for each PRNG in RIOT are displayed in Figure 3. Similar
to the NIST tests, we plot average p2-values, where applicable. In the style of previous graphs, we
display passing tests with gray bars, and we highlight failed tests with hatched red bars or red
arrows in case that the p2-value is too small to be displayed. Additionally, we mark weak results
with black bars.

All complex generators displayed in the first row of Figure 3 pass all tests. Several failures must
be observed for the lightweight generators displayed in the second row of Figure 3. Details are
discussed in the main article [Section 7.4].

Fig. 3. KS-test results on the distribution of probability values from 31 DIEHARDER tests. p2-values in the
significance interval (α , 1 − α) with α = 10−6 pass the test. p2-values within the interval (α2, 1 − α2) with
α2 = 5 · 10−3 are considered as weak.
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C LIST OF ABBREVIATIONS

Table 1. List of Abbreviations that We Use within This Work

AES Advanced Encryption Standard
AI Artificial Intelligence
ALU Arithmetic Logic Unit
CPU Central Processing Unit
CSMA Carrier Sense Multiple Access
CSPRNG Cryptographically Secure Pseudo-random Number Generator
DH Diffie-Hellman (key exchange)
DRBG Deterministic Random Bit Generator
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman (key exchange)
ECDSA Elliptic Curve Digital Signature Algorithm
FIPS Federal Information Processing Standard
HWCSPRNG Hardware Cryptographically Secure Pseudo-Random Number Generator
HWPRNG Hardware Pseudo-random Number Generator
IoT Internet of Things
ISA Instruction Set Architecture
KS-Test Kolmogorov Smirnov Test (statistical test)
LCG Linear Congruential Generator
LFSR Linear Feedback Shift Register
MCU Microcontroller
M2M Machine to Machine
NIST National Institute of Standards and Technology
NIST STS NIST Statistical Test Suite
OS Operating System
PULP Parallel Ultra Low Power (processor)
PRNG Pseudo-Random Number Generator
PUF Physically Unclonable Function
RNG Random Number Generator
RO Ring Oscillator
RSA Rivest-Shamir-Adleman (cryptosystem)
SHA Secure Hash Algorithm
SoC System on a Chip
TRNG True Random Number Generator
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