The Far Side of DNS Amplification: Tracing the DDoS Attack Ecosystem from the Internet Core

Marcin Nawrocki, Mattijs Jonker, Thomas C. Schmidt, Matthias Wählisch

{marcin.nawrocki, m.waehlisch}@fu-berlin.de
m.jonker@utwente.nl, t.schmidt@haw-hamburg.de
DNS amplification attacks and a common assumption

Assumption: Those sensors provide a complete view.
DNS amplification attacks and a common assumption

Assumption: Those sensors provide a complete view.
What is this talk about?

Does an IXP observe additional DNS amplification attacks?

Does an IXP contribute new insights into the efficiency of attacks?

Is DNSSEC fully exploited by an attacker?
Our contributions

A method to infer DNS amplification attacks in sampled IXP flow data.

Comparative measurement study using complementary data from Internet core and edge.

Unveiling of new DNS attack practises.
What is this talk about?

Does an IXP observe additional DNS amplification attacks?

Does an IXP contribute new insights into the efficiency of attacks?

Is DNSSEC fully exploited by an attacker?
Our vantage points for comprehensive observations

- IXP: [sampled flow data]
- CCC: [captured traffic]
- OpenINTEL: [DNS records]
- SHODAN: [IPv4 scans]
How to detect attacks at an IXP? Identify misused names.

Key assumption:
Attackers are likely to reuse names that lead to large responses.

Selectors:
- Maximum response size
- # ANY packets
- CCC ground truth traffic
How many names per selector? **Selector consensus.**
How many names per selector? **Selector consensus.**
How many names per selector? **Selector consensus.**
How to detect attacks at an IXP? Identify irregular DNS behavior.

Assumption:
A host is under attack if it exchanges *many* DNS queries or responses with misused names.

Approach:
Apply thresholds to verify misused name candidates.
IXP detects attacks unseen by a large honeypot platform

Honeypots: 31k attacks

IXP: 26k attacks

4% of attacks observed by both vantage points
What is this talk about?

Does an IXP observe additional DNS amplification attacks?

Does an IXP contribute new insights into the efficiency of attacks?

Is DNSSEC fully exploited by an attacker?
Estimating ANY response sizes based on OpenINTEL data
Estimating **ANY** response sizes based on OpenINTEL data

9048 names would enable attackers to **increase** the amplification factor up to **14x**
Amplifiers react to **ANY**, observed in real IXP traffic
Amplifiers react to **ANY**, observed in real IXP traffic

effective amplification with ANY requests

tri-modal distribution shows ineffective amplification
What is this talk about?

Does an IXP observe additional DNS amplification attacks?

Does an IXP contribute new insights into the efficiency of attacks?

Is DNSSEC fully exploited by an attacker?
Clear transitions of misused names expose a new attacker
Attackers select inflated DNS zones

Deviation from best-practice: automatic double-signature ZSK rollovers inflate zone size!
Attackers select inflated DNS zones

Deviation from best-practice: automatic double-signature ZSK rollovers inflate zone size!

Attacker always selects names in inflated state.

Estimated ANY Response Size [kB]

Time [days]

EDNS Limit
Brief Validation
Misused names have low web popularity but high cache hits, indicating frequent usage due to other reasons.
Misused names have low web popularity but high cache hits, indicating frequent usage due to other reasons.

An anti-DDoS provider recently linked peacecorps.gov with a booter (SynStresser).
What this talk was about.

Does an IXP observe additional DNS amplification attacks?
Only 4% overlap compared to honeypots.

Does an IXP contribute new insights into the efficiency of attacks?
ANY queries still effective. Attackers could launch larger attacks.

Is DNSSEC fully exploited by an attacker?
Bad DNSSEC key rollover practices misused.
++ Backup Slides ++
DNSSEC Key Rollovers

Pre-Publish

- introduces only the new key in stand-by mode, i.e., not yet used to sign RRsets, until everyone learns about it
- prone to race-conditions, still the recommended best practice

Double-Signature

- two active ZSKs and two (redundant) RRSIG records signatures, “old” key is then retired after a timeout
- valid rollover (RFC 6781), but doubles the number of signatures in a zone
Why don’t honeypots observe everything?

1. Honeypots integrate into an ecosystem of amplifiers. How many other amplifiers exist and how are they misused? This might be different for each protocol!

2. Honeypots can be identified as such because they apply rate limiting (ethics & liability) and often only emulate a vulnerable service, which leads to specific fingerprints.

3. Amplification honeypots have to distinguish between scans and attacks, which they do by thresholds. What are good thresholds?

4. Honeypots are deployed in very specific networks, usually cloud or universities. Bias?
Why only DNS?

Next to NTP, DNS is still one of the most-commonly misused protocols, *since years*.

Also, compared to other protocols, the DNS amplification ecosystem is very special:

- There is not a single attack query but many various ways to trigger attacks (--> memcache).
- Attacks tend to misuse legitimate names, this might have an adverse effect on third parties, which are actually not involved and completely unaware.
- We have a lot of additional, research-based data sources (e.g. OpenIntel) which really help to understand the more complex observations.
- (DNS amplifiers have the highest churn rates. We wanted to see whether attackers adapt.)
Why do we need to “select” names? Why 3 selectors?

Using the selectors allows us to focus the analysis on very suspicious parts of the DNS traffic. This leads to a huge performance boost. Again, it’s an IXP, so we have a lot of data.

This allows us a deployment at the IXP which detects attacks with a minimal delay.

The nice thing here is that the selectors are easily extendable, if you want you could throw in any new selector and see how it performs.
Do the auth. nameservers with larger zones allow \texttt{ANY}?

We did not specifically check this. However, attacks are also possible without \texttt{ANY}:

1. Sometimes individual resource records like the \texttt{RRSIG} or \texttt{TXT} are already large enough to be attractive for attackers.

2. It is more important whether the amplifiers allow \texttt{ANY}, and they do.

95\% of amplifiers are DNS forwarders, which forward queries to a resolver. For example, we observed a resolver responsible for 40k forwarders. This means that the attacker could fill up the cache of this specific resolver with a couple of requests for individual resource records and than use all these forwarders as amplifiers. This is possible because \texttt{ANY} is not \texttt{ALL}, so there will be answers with a large subset.
Are authoritative nameservers used for attacks?

1. Authoritative servers should not recursively resolve DNS queries, which makes them less attractive amplifiers. That’s why we only found a couple of name servers.

2. But there is one special case: Attacks which use the root-name for amplification are 4x more likely to use authoritative nameservers. This is because misconfigured nameservers actually answer with the root hint-files, which are quite large, if they receive queries for the root-name.
How do honeypots detect attacks?

CCC applies a sensor-based attack threshold. Attack if:

>=5 DNS requests per sensor, idle timeout of 900 seconds
Shodan: Unveiling the lifecycle of amplifiers

Most amplifiers are detected several months before or during misuse. After misuse, amplifiers disappear during the IXP attack period. Only 2% of amplifiers are detected after misuse.
How are the amplifiers used?

* These values are not extrapolated by the sampling rate (1 : 16k).
IXP attack thresholds with misused names

A DNS client is under attack if:

1. ≥10 sampled DNS queries or responses
2. share of 90% of misused names

Extrapolating by sampling rate, this corresponds to ≥144k packets with misused names. No legitimate client needs so many requests, especially with caches.

In total, 34 candidate names. For 32 of these names (94%), we detect attacks. Our candidates are clearly misused for attacks.
What is the influence of your thresholds?
The attacker relocated into the customer cone of an IXP member, which increased attack visibility (queries now visible).
More fingerprints for major attack entity? DNS TXIDs are not random!
… but are alternating between odd and even.
Honeypots convergence: The more the better is not true.
What about mutual attack events?
How asymmetric is the spoofed attack traffic?
Hot distributed are the attacks by the attack entity?
New amplifier lists by major attack entity?

![Graph showing the number of known and new amplifiers over time from June to September 2019. The graph is color-coded, with blue representing known amplifiers and orange representing new amplifiers. Peaks in amplifiers are observed during specific periods in July and August.]
Unsupervised clustering of amplifier lists? T-SNE & DBSCAN find almost no clusters.
Can you attribute attacks at the IXP?

Sampled DNS Requests with Misused Names [#] vs. Cone Size of Ingress Link [AS]

- No DNS Spoofing (63 AS)
- DNS Spoofing (19 AS)

Attacking Stub AS
How many flows do you see per client?
Is the major attack entity still active?

No. This summer changed a lot. It is unlikely that the attack entity is currently active.