
A Common API for Hybrid Group Communication
Matthias Wählisch

FU Berlin, Inst. für Informatik
Takustraße 9

D–14195 Berlin, Germany
Email: waehlisch@ieee.org

Thomas C. Schmidt
HAW Hamburg, Dept. Informatik

Berliner Tor 7
D–20099 Hamburg, Germany

Email: t.schmidt@ieee.org

Georg Wittenburg
FU Berlin, Inst. für Informatik

Takustraße 9
D–14195 Berlin, Germany

Email: wittenbu@inf.fu-berlin.de

Abstract—Recent efforts are made to construct a globally
accessible group communication service by a simultaneous use of
network and application layer multicast. Such hybrid approaches
provide native multicast to group members wherever available,
but relocate data distribution and duplication from the network
to applications or gateways if needed. Such services require an
abstract programming interface to allow for a transparent use by
applications. The contributions of this paper are twofold. First,
we explore the problem space of designing a protocol stack for
hybrid group communication that covers structured P2P net-
works. Second, we propose a transparent API that encapsulates a
middleware abstraction layer for implementing hybrid multicast,
and allows for overlay-underlay agnostic programming.

Index Terms—Adaptive Group Protocol Stack, Key-based
Routing, Inter-domain Hybrid Multicast, Dabek Model

I. INTRODUCTION

Group communication is most efficiently supported on the
network layer, but lacks deployment in the global infras-
tructure. In contrast, overlay multicast remains infrastructure-
agnostic, but implements suboptimal forwarding. Hybrid
schemes combine both, using native multicast where deployed,
and bridge the inter-domain gap by application layer overlays.

Recent approaches to routing overlays have been realized
as structured P2P systems and implemented with the help of
Distributed Hash Tables (DHTs). Originally, DHTs provide
an application layer service that stores and retrieves key-value
pairs in a distributed fashion. They are reasonably efficient and
scale over a wide range of overlay members in contrast to IP
tunneling [1] or unstructured P2P networks. The separation of
the store/retrieval function from the peer lookup enables new
routing services such as multicast. Structured overlay routing
operates on application layer IDs. These keys require a map-
ping to the underlay in hybrid scenarios.

A modular network stack is needed to transparently inter-
connect regions of structured overlay and native multicast, as
well as an API to control the group management between
overlay and underlay. Such a group communication network
stack has been introduced in [2]. In this paper, we discuss
the problems of flexible, hybrid P2P networks and present
a common multicast API. First, we review current work on
structured overlay programming (§ II). Second, we introduce
our core contribution, the design of a common API for
group communication, which serves the requirements of data
distribution and maintenance for multicast and broadcast on
a middleware abstraction layer (§ III). A final discussion
concludes this contribution.

II. CURRENT CONCEPTS OF A COMMON API FOR
STRUCTURED OVERLAY ROUTING AND MULTICAST

The common way to model routing, services and ap-
plications leads to a layered architecture that is composed
of flexibly interchangeable modules with common interface
definitions between all components. Flexibility emerges from
two perspectives: (a) the development process may be sim-
plified as modules can be reused, and (b) deployed modules
can be combined from tailored units. In the scenario of
structured P2P networks, an application can be composed of
overlay implementations best suited for current requirements
on performance and service needs. This may not only reduce
complexity, but also diminish maintenance overhead from
unwanted services. In the following, we discuss the common
model to decompose DHT systems, and review related work.

A. The Dabek Model

The first ideas towards a layered architecture with a common
API for structured overlays have been presented in [3]. The
concept is known as the Dabek model and has been imple-
mented in numerous simulators [4] and DHT stacks [5]. The
basis of the Dabek model is a unified overlay routing interface.

The decentralized routing mechanism of P2P protocols
serves as a virtualized network layer. Dabek et al. observed
that many peer-to-peer services and applications are built upon
a key-based routing (KBR) module, which can locate peers
for multiple purposes. Based there on, the authors suggest a
compound P2P layer consisting of three tiers: Tier 0 represents
the fundament of overlay communication, the KBR layer.
Tier 1 implements higher level abstractions, complemented
by tier 2 for end user applications and further, higher level
services.

The Dabek model focuses on tier 0. The meaning of
tier 1 and 2 has not been fully elaborated. Both tiers may
accommodate services with direct access to the KBR layer.
Reusable abstractions for specific purposes are dedicated to
reside on tier 1. The DHT abstraction is such an example for
which provides a store-and-retrieval key management service
on the overlay for applications like file sharing. On top of the
DHT abstraction, further services may be available, such as an
additional caching at ’end-user’ applications or specific store
and retrieval functions.

1) The Common Key-based Routing API: The key-based
routing layer provides the option to forward data along overlay
hops. With respect to the concepts of layered architectures, an

265978-1-4244-4487-8/09/$25.00 ©2009 IEEE

2009 IEEE 34th Conference on Local Computer Networks (LCN 2009)
Zürich, Switzerland; 20-23 October 2009

implementation may delegate messages to the KBR component
that performs the routing. Hence, all application data will be
encapsulated in overlay messages and delivered by the KBR.
However, this may be inefficient, because it can cause double
encapsulation, at the service and the KBR layer. Additionally,
a tier 1 service may follow a different routing strategy than
the overlay paths. Thus, a common API should remain open
with respect to adaptable message forwarding, as well as KBR
state access.

The KBR API by Dabek et al. consists of two functional
groups. The first part provides function calls for sending and
receiving data messages from above tier 0, and also for con-
trolling the overlay routing path for messages initiated by the
service or application. These are subsumed as message routing.
The second part grants access to local KBR routing states.

For a detailed description of the routing and state access
functions, we refer to [3]. Applications can invoke these
functions from higher tiers to inquire about the local peer
routing states. Nevertheless, local lookups will fail, whenever
the requested information is not locally available. To facilitate
a global peer access, the message routing functions can
be used. The routing as well as the state access functions
require a common key parameter that corresponds to the
overlay address. Consequently, all applications using one of
the primitives must be aware of the hash function in use.

2) Limitations of the KBR-API: The generic approach of
the KBR-API does not provide information about the actual
overlay routing protocol or implementation-specific parame-
ters, such as the key properties in KBR or the dimension in
the DHT CAN [6] (Content Addressable Network). Such meta
information is of interest for services that implement cross
layering or operate by adapting to the underlying KBR.

An example is given by specilized routing services that
construct individual forwarding tables from local state infor-
mation. Using the common API, these services can retrieve
generic destination values, but are not enabled to reconstruct
the underlying routing structure.

To make the protocol parameters visible to upper tiers, the
API needs extensions. One possible concept could include
dynamic maps to present the KBR specific configurations in
the form of key value pairs. The corresponding schemes can be
implemented by information bases similar to Management In-
formation Bases (MIBs). The implementation of this approach
requires only a getter call. The actual parameter set is then
defined by the protocol instance.

In using such a rich, compound P2P layer concept, existing
key-based routing implementations can be enhanced by new
services without changing the KBR component. For this
purpose, a new service is only required to implement the
common KBR calls. However, more complex services such
as overlay multicast need to provide their own common API
towards applications.

B. Group Service Models

The Dabek model proposes a multicast abstraction,
called CAST [3]. The idea is to provide overlay

services in a generic multicast module. CAST consists
of a set of interfaces for group management and data
distribution (join(groupId), leave(groupId),
multicast/anycast(msg,groupId)), as well as a
basic multicast routing on top of the KBR layer. Routing
within CAST is built upon a dedicated tree management and
forwarding scheme, which is similar to Scribe [7] (a PIM-SM
like overlay approach). Calling the join function initiates a
subscription message routed towards the hash of the group
id, employing the KBR route. At all intermediate peers,
the upcall forward is invoked to establish corresponding
multicast states in CAST. On top of CAST, the authors have
foreseen further multicast implementations, e.g., Scribe or
Bayeux [8].

This approach of a universal routing protocol as part of the
middleware layer may conflict with the forwarding strategy
pursued by services above CAST. A simple example can be
identified in the difference between Scribe and Bayeux. While
Scribe creates a rendezvous point-based shared tree according
to reverse path forwarding, Bayeux sets up source-specific
states along the path from the source to the new receiver.
Thus for Bayeux, CAST would establish multicast states in
the opposite direction. Indeed, the idea of providing the P2P
layer with a generic multicast routing logic is valuable for
applications agnostic to routing services, but fails in general
for overlay multicast (OLM) modules. Group specific routing
forms the core component of any multicast solution and
may differ by approach and domain-specific demands. In this
sense, a service abstraction should only provide an interface
definition, but not a routing logic.

Another application layer multicast (ALM) middleware ar-
chitecture including a wrapper API is currently presented in
[9]. The authors assume that an ALM protocol consists of
the following parts: group management, topology management
and traffic management, which can be adopted by different
ALM protocols. For the latter, they propose an API for
interoperability and transparency. The API calls support the
selection of different transport protocols, as well as a native
network and an overlay transmission mode.

The motivation of the suggested API is to provide a unique
interface for supporting structured and unstructured ALM pro-
tocols. As mentioned by the authors, the requirements slightly
differ, which is reflected in the API design. Unstructured group
management introduces functions unknown in the context of
structured overlay multicast, an external group management
for example. Many unstructured multicast schemes rely on
central management and provide a global view on the group
structure. In general, the simultaneous support of centralized
and decentralized approaches poses a severe challenge to a
common middleware. Such a cooperative deployment scenario
is less likely than KBR protocols jointly operating with
network layer multicast, as both are fully distributed and
explicitly neglect a server infrastructure.

The authors in [10] present a middleware for unstructured
application layer multicast only. They decompose the ALM
component into several functional units, e.g., a metric esti-

266

mator or a logic net to maintain and optimize the overlay
network. The proposed API does not account for a transparent
overlay and underlay group communication and consists only
of simple receive/send calls.

III. A MIDDLEWARE FOR STRUCTURED P2P GROUP
COMMUNICATION

A. Objectives

The main task of an overlay multicast (OLM) component
is the distribution of data according to the host group model.
Destined for a group address, messages are replicated along
an existing (virtual) routing infrastructure similar to native
networks. On the unicast side, routing in structured overlays
can be provided by the KBR layer and the access may be
decoupled from a specific implementation using the common
primitives. Thus, structured overlay group communication
requires at least the KBR layer.

The KBR layer connects peers to a unicast network.
Multicast domains will be established, when overlay nodes
form a group as maintained within the OLM middleware. A
special case is broadcast, which inherently floods all nodes of
the network. This may happen without the establishment of
selected routing paths. Hence, multicast and broadcast follow
different distribution schemes, and require distinction at the
API level. A modular OLM stack should account for these
conceptual different challenges and solutions.

Besides flexibility, an OLM design should also be guided
by a compatibility principle with respect to native network
services. On the one hand, the API calls, e.g., joining and
leaving groups, should be compliant to well-known functions,
such that application developers are not distracted. On the
other hand, the OLM middleware should provide an interface
that allows for transmission of data to both overlay and native
multicast networks.

Overlay group communication differs from native IP net-
works with respect to addressing. An IP stack is fed with
the correct network address type to perform routing, whereas
the key-based routing layer maps an arbitrary identifier into
the deployed key space, which commonly is not invertible
and does not allow to recover original IDs. Applications
need to regain those identifiers explicitly, and it may be an
advantage for the overlay routing to be aware of the application
addresses, as well. Based on application addresses, the overlay
scheme may for instance aggregate or scope groups. Thus, the
design of an OLM middleware should preserve common group
functions, but also include support for specific aspects of the
layers involved, and remain open for additional functionalities
arising from structured overlay networks.

B. Current Challenges

The APIs presented so far either focus on a common inter-
face for tree construction, or a direct adoption of native group
management calls. However, the concepts do not account for
two further important aspects:

(a) Which types of addresses may join the application?
(b) How does the OLM API provide dedicated broadcast?

Commonly, a structured overlay network does not restrict
the address space to any specific type. Each address will
be handled as a string and hashed to the same identifier
space without further syntactical or semantical processing.
Nevertheless, the overlay may require special addresses for
group communication to predefine a subset of group members,
such as a broadcast address. Applications operate in different
contexts and denote communication parties with respect to
a domain-specific namespace. Special addresses should be
available in all namespaces to allow for its continuous use.

Native IP and many structured OLM schemes offer a
native broadcast service, and supplementing the API with an
additional broadcast interface appears as a simple solution
for service access. However, broadcast and multicast operate
on the same overlay, which may result in key collisions.
Consequently, the OLM middleware should foresee a specific,
but well-known broadcast address, which can also be used to
identify broadcast and multicast data on the same channel.
There are two natural options to map broadcast addresses
uniquely onto the same overlay key. The API may define a
broadcast address that belongs to a specific context, but is
obligatory for all applications. Application programmers then
have to use this specific address and may need to account
for context switches. Alternatively, broadcast addresses should
be embedded in every namespace. These multiple, dedicated
addresses can then be mapped by the middleware to a common
identifier, which does not conflict with multicast addresses.
For this reason, an OLM should be aware of namespaces,
and each namespace should include a unique broadcast ad-
dress. This can be implemented, e.g., by using the natural
255.255.255.255 for IPv4 or the link-local all-nodes address
for the IPv6 namespace. Application layer addresses such as
SIP URLs can reserve the asterisk for broadcast identification.

Address awareness may enhance overlay group communi-
cation over native multicast. A typical example may be news
channels, e.g., sam@irtf.org and mobopts@irtf.org, which fall
into a combined group *@irtf.org. Based on a corresponding
aggregation, a user subscribes only once, instead of joining
each channel. Such group aggregation can be applied, if an
arbitrary namespace includes a broadcast address and the OLM
component is semantically aware of the namespace definition.
In the described example, the OLM middleware would identify
the user and host parts of the compound namespace and initiate
a partial broadcast to all members of irtf.org.1

C. An API Proposal

The architecture of a hybrid group communication stack and
the interplay of overlay and IP multicast routing is described
in [2]. In the following, we introduce the corresponding API.

Overlay routing is based on hashed keys. As applications
are unaware of any overlay specifics, the mapping of the

1This group aggregation does not follow the common multicast paradigm,
but can for instance be naturally implemented in CAN which we only sketch:
Each part of the namespace is separately hashed and corresponds to a CAN
dimension. Equal addresses result in equal CAN coordinates. Flooding the
selected namespace then corresponds to data dissemination in the selected
dimension.

267

destination address to the key space should be performed on
the ALM layer as suggested by Dabek et al. Nevertheless,
it is important to preserve the original group identifier, as an
application may receive multiple streams of different multicast
addresses via the same communication channel. As an overlay
is used in a specific context, the identifiers selected by the
applications are likely to belong to the same namespace.
Thus, we suggest to pre-initialize the communication channel
between application and group stack with the corresponding
context to simplify the API calls.

The destination group address configured by the application
is a common application layer or network address and is
denoted by address. In contrast, overlay IDs are identified
as key. The application can choose, if it sends the data to
the underlay or overlay. We denote the corresponding data
type mode, which also allows leaving the decision to the
group communication stack, if the mode is unspecified. In the
following, we will describe the API calls used between the
group communication stack and the application.

At first, we explain briefly calls to function for sending and
receiving multicast data, thus, reflecting typical source and
receiver instances.
init(namespace→n) This call is implemented by the

multicast middleware to set up the communication channel
between application and stack. It preinitializes the namespace,
which then can be used for all further calls.
void join(address→a, mode→m) The join call is

implemented by the ALM stack. It initiates a group sub-
scription. Depending on the mode, this may result in an
IGMP/MLD join, if the address is a valid IP multicast address.
The address of joins towards the overlay will be pre-processed
to implement, e.g., group aggregation and broadcast. The
middleware creates a corresponding overlay key.
void leave(address→a, mode→m) This downcall

is implemented by the middleware and results in an unsub-
scription for the given address.
void send(address→a, mode→m,

message→msg) This function is invoked at the middleware
to send group data. If the overlay parameter has been
configured, the middleware decides to forward the data
supplied with the corresponding key to the broadcast or
multicast module based on the destination address.
void receive(address→a, message→msg)

This upcall is implemented by the application and delivers
overlay and underlay messages received at the node. The
address represents the destination used by the source
application instance.

To request multicast states, we define the following group
service API:
nodehandle [] groupSet(mode→m) This opera-

tion returns all registered multicast groups. The information
can be provided by group management or routing protocols.
The return values distinguish between sender and listener
states.
nodehandle [] neighborSet(mode→m) This

function can be invoked at the middleware to get the set of

multicast routing neighbors.
bool designatedHost(address→a) This function

is implemented by the middleware and returns true, if the host
has the role of a designated forwarder or querier. Such an
information is provided by almost all multicast protocols to
handle packet duplication, if multiple multicast instances serve
on the same subnet.
address updateListener(mode→m) This upcall is

invoked to inform a group service about a change of listener
states for a group. This is the result of receiver new subscrip-
tions or leaves. The group service may call groupSet to get
updated information.
address updateSender(mode→m) This upcall is

implemented by the middleware to inform the application
about source state changes. Analog to the updateListener
case, the group service may call thereupon groupSet.

IV. CONCLUSIONS

Hybrid multicast combining overlay and underlay routing is
commonly seen as a promising path to a widening deployment
of group communication services. Its transparent use by arbi-
trary applications will be fostered by a common programming
interface present at applications or infrastructural gateways. In
this paper, we have presented and discussed such a universal
group API, which along the way opens opportunities for
enriching group communication functions beyond the basic
host group model. The API can be applied immediately to
implement inter-domain multicast gateways [2], which may
serve as the building blocks in a future hybrid shared multicast
architecture. In future work, we plan for real deployment
experiments with a special focus on inter-provider interaction.

REFERENCES

[1] D. Thaler, M. Talwar, A. Aggarwal, L. Vicisano, and T. Pusateri, “Au-
tomatic IP Multicast Without Explicit Tunnels (AMT),” IETF, Internet
Draft – work in progress 09, Jun. 2008.

[2] M. Wählisch, T. C. Schmidt, and G. Wittenburg, “A Generalized Group
Communication Network Stack and its Application to Hybrid Multicast,”
in Proceedings of the 28th IEEE INFOCOM. Student Workshop. IEEE
Press, April 2009.

[3] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,
“Towards a Common API for Structured Peer-to-Peer Overlays,” in Proc.
of IPTPS 2003, ser. LNCS, M. F. Kaashoek and I. Stoica, Eds., vol. 2735.
Berlin Heidelberg: Springer–Verlag, 2003, pp. 33–44.

[4] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers, “The State of Peer-to-Peer Simulators and Simulations,”
SIGCOMM Comput. Commun. Rev., vol. 37, no. 2, pp. 95–98, 2007.

[5] P. Druschel et al., “FreePastry,” http://freepastry.rice.edu/FreePastry/.
[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A

Scalable Content-Addressable Network,” in Proc. of SIGCOMM 2001.
New York, NY, USA: ACM, 2001, pp. 161–172.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE:
A large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE JSAC, vol. 20, no. 8, pp. 100–110, 2002.

[8] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination,” in Proc. of NOSSDAV 2001, New York,
NY, USA: ACM, 2001, pp. 11–20.

[9] B. P. Lim and K. Ettikan, “ALM API for Topology Management and
Network Layer Transparent Multimedia Transport,” IETF, Internet Draft
– work in progress 00, Jan. 2008.

[10] N. Mimura, K. Nakauchi, H. Morikawa, and T. Aoyama, “RelayCast:
A Middleware for Application-level Multicast Services,” in Proc. of
CCGRID 2003, Washington: IEEE Comp. Soc., 2003, pp. 434–441.

268

