
TRAIL: Topology Authentication in RPL

Heiner Perrey, Martin
Landsmann, Osman Ugus
Dept. Informatik, HAW Hamburg

first.last@haw-hamburg.de

Matthias Wählisch
Inst. Informatik, FU Berlin

m.waehlisch@fu-berlin.de

Thomas C. Schmidt
Dept. Informatik, HAW Hamburg

t.schmidt@haw-hamburg.de

Abstract
The IPv6 Routing Protocol for Low-Power and Lossy Net-

works (RPL) was recently introduced as the new routing stan-
dard for the Internet of Things. Although RPL defines basic
security modes, it remains vulnerable to topological attacks
which facilitate blackholing, interception, and resource ex-
haustion. We are concerned with analyzing the corresponding
threats and protecting future RPL deployments from such at-
tacks. In this paper, we derive and evaluate TRAIL, a generic
scheme for topology authentication in RPL. TRAIL solely
relies on the basic assumptions of RPL that (1) the root node
serves as a trust anchor and (2) each node interconnects to
the root as part of a hierarchy. Using proper reachability
tests, TRAIL scalably and reliably identifies any topological
attacker with little cryptographic efforts.
Keywords

IoT, routing security, mobile security, performance
1 Introduction

RPL [1] has been designed as an efficient and scalable
routing protocol for low-power and lossy networks (LLN). It
promises to reduce the overall power consumption by mini-
mizing the control traffic, which is a major requirement for
the energy constrained devices envisioned in the future Inter-
net of Things (IoT). Such tiny intercommunicating devices
like sensor nodes used in (home) automation, smart grids or
surveillance systems are expected to massively populate our
environment soon.

RPL constructs one or several tree topologies oriented
towards a single root node. Each node in the RPL routing
graph has a rank derived from its parent relationship that
describes the topological distance to the root. Every node
joining the topology calculates a higher rank than its parent,
lower ranks are used for default upstream. This proactive
organization leads to a Destination Oriented Directed Acyclic
Graph (DODAG) topology, from which RPL is able to detect
and remove inconsistencies reactively.

Control traffic in this topology consists of DODAG Infor-
mation Objects (DIOs). A DIO advertises parameters and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EWSN’16, February 15–17, 2016, Graz, Austria.
Copyright c© 2016 ACM 978-1-4503-1169-4 ...$10.00

constraints for a specific DODAG that is uniquely identified
by a version number. A node uses the information obtained
from a DIO to select a parent node, compute its rank and join
the DODAG, from which it inherits an upward route towards
the root node. An optional upwards advertisement of Desti-
nation Advertisement Objects (DAO) generates downward-
oriented routes to children of a subtree. Depending on the
mode of operation, these routes are either maintained and
stored at each node (storing mode), or forwarded to the root
node and collected there (non-storing mode). The integrity
of distribution trees is essential for RPL, as an inconsistent
hierarchy will lead to traffic redirections and a loss of routes
to the root. In addition, RPL will attempt to cure tree deficien-
cies by reorganization, and a node that will hold up failures of
the routing hierarchy may trigger repeated reconfigurations
that drain resources of the network.

RPL offers basic protection against external topology at-
tacks [1]. However, as nodes may be captured and security
keys can be extracted from them, the RPL topology is threat-
ened by various attacks from inside the network [2]. The rank
of a node and the DODAG version number are focal attributes
in the topology. Known attacks are foremost based on them.
A false rank of a node forges the relative topological distance
to the root and disarranges the hierarchy. An inconsistent ver-
sion breaks the reference to the topological graph and causes
the network to reconfigure. Corresponding protections are
not part of the current RPL specifications.

As major countermeasure, VeRA [3] has been proposed
to fix these two classes of vulnerabilities by adding reverse
hash chaining to DIO messages. Receivers shall be enabled
to verify the advertised hierarchy. However, we could show
that VeRA remains vulnerable to rank attacks by forgery and
replay. In this paper, we present a more generic approach to
solve the problem of topology authentication in RPL. Leaving
aside the complexity of VeRA, our remaining work concen-
trates on TRAIL (Trust Anchor Interconnection Loop) that
discovers and isolates bogus nodes while they attack the RPL
routing hierarchy. TRAIL is derived of first hand principles
and resolves the issues of topological infringements.

The remainder of this work is structured as follows. Sec-
tion 2 discusses the problem of securing RPL, common at-
tacks and related work. Section 3 introduces and proves
TRAIL, our generic solution for topology authentication.
TRAIL is thoroughly evaluated in Section 4. Finally, we
conclude in Section 5 and look out on future work.

2 RPL Security Challenges & Related Work
RPL constructs a reverse path forwarding hierarchy by an-

nouncing tree parameters in the downward direction, starting
from the root node. A node that successfully joined the tree
advertises its rank towards its potential children in so called
DIO messages, while unconnected nodes select as parent the
neighbor of lowest rank, i.e., in closest position to the root.
Following this algorithm, a fully connected acyclic, hierar-
chical graph is created in compliance to wireless reachability.
Each of such DODAGs is associated with a unique version
number to survey consistency.

RPL specifies secured control plane messages for authen-
ticity, integrity, and optional confidentiality [1]. Even though
these basic security features defend against external attack-
ers [4], RPL remains unprotected against adversaries from
inside the network [3, 5]. Capturing a node and extracting
security credentials enables an attacker to gain access to the
control plane and to modify the routing topology. The rank
and the version number are the key information for defining
the structure of the routing system. The essential challenge
for securing the routing topology thus is to protect rank and
version number from any unwanted modification. Strong
identity-based end-to-end authentification as introduced in
[6] could defend a RPL routing system against internal modi-
fications. However, its inherent complexity prevent this from
being a standard solution. Next, we introduce the core attacks
against the RPL topology and the assumptions made on the
attacker.

2.1 Attacker Model
We assume the presence of one or multiple attackers that

physically captured and compromised multiple, arbitrary
nodes on the network. The attacker has access to all available
keys on the captured nodes, which include all information
for joining and participating in the DODAG without restric-
tions. The compromised nodes are successfully integrated
in the network and are thus authorized to transmit authenti-
cated messages. Furthermore, the attacker is limited by the
resources and constraints of the captured nodes. Hence, we
assume that the attacker cannot install directed antennas or
create multiple identities [7] to seemingly use several mali-
cious nodes with one physical interface or to establish out-of-
band channels. The attacker aims at maximizing his impact
on the network, for example by attracting as much traffic as
possible for eavesdropping or sink-holing, or by affecting the
operational conditions of as many nodes as possible.

2.2 Topology Attacks
Version Number Attacks: The version number of the

DODAG is increased by the root node, whenever a global
repair is needed. This occurs, if inconsistencies cannot be
repaired locally. In a version number attack [3], an attacker
illegally increases the version number of the DODAG. Pub-
lishing a higher version number will lead to a reconstruction
of the RPL topology. This either serves as a preparation for
a following attack such as on the rank, or can be repeatedly
executed to disturb the network and drain the resources of
nodes.

Rank Spoofing Attack: In a rank spoofing attack [3], a
malicious node propagates an incorrect rank to change its

(a) Topology after a rank spoofing (b) Topology after a replay attack

Figure 1. RPL topology (a) with rank spoofing. The at-
tacker M propagates a rank jM falsely decreased by ∆,
and thereby incorrectly attracts nodes 1, 2, 4, and the
parent node H, which creates a sinkhole. (b) visualizes a
replay of the parent rank, only attracting nodes 1, 2, and
4 with intact upstream to H.

position in the routing tree. Commonly, an attacker will
choose a lower rank to improve its position in the hierarchy
and achieve larger impact on the network. In response to
forged rank advertisements, neighboring nodes select the
attacker as parent and forward traffic towards it. Fig. 1(a)
visualises the topological manipulations caused by a strict
rank decrease. The attacker M propagates the lowest rank
of the vicinity and attracts all its neighbors. In this example,
the parent node H is also attracted by the malicious node
M, which creates a sinkhole. Node 3 correctly selects M as
parent, but unknowingly propagates the illegal rank downtree.
Thus, 3 and its parents potentially attract even more children
and increase the number of nodes that forward traffic towards
the attacker M.

Rank Replay Attack: An attacker who learned a valid
rank from a (potential) parent may replay this value in its
own advertisements and pretend to run at one hierarchy level
above the proper value. This special case of a rank spoofing
will not disconnect the attacker from the root as visualised
in Fig. 1(b). In contrast to arbitrary rank forgery, the replay
allows a malicious node to re-use a proper rank, even if rank
verification schemes apply. We will show in the following
section that present protection schemes are vulnerable to rank
replay attack.
2.3 Related Work

Recent work has classified the different attacks on RPL [8],
but only limited work has addressed the security of the RPL
routing system. A security threat analysis for LLNs by the
IETF [4] focuses on potential threats and attacks. However,
the analysis solely proposes generic countermeasures to the
described attacks. Some attempts have been made to deal
with topology attacks [9, 3, 10, 11, 12]. VeRA addresses the
rank and version number attacks by adding a rank and version
control obtained from hash chaining [3]. While successfully

rank: 1
...

rank: j

rank: j+1

rank: j+2

S

H

M

4

1

2

3

(a) Successful Rank Validation

rank: 1
...

rank: j

rank: j+1

rank: j+2

S

H

M

4

1

2

3

(b) Failed Rank Validation

Figure 2. TRAIL SINGLE RANK VALIDATION: Node
3 initiates the rank validation by sending a nonce, η, to
parent M. In (a) M announces its true rank. The message
arrives at the root and is singed. In (b) M uses a forged
rank, hence the message is dropped.

mitigating a version number attack, the VeRA approach is
still subject to two topology attacks [13]. The first attack is a
general rank spoofing, which allows an attacker to pretend any
rank and therefore any position in the DODAG. The second
attack is a rank reply attack, which allows an attacker to claim
one level closer to the root by replaying its parent rank. An
extended version of the present paper [14] analyzes these
vulnerabilities in detail and derives countermeasures.

Our work goes beyond mitigating sinkhole attacks. By
performing generic topological tests, we inquire on the in-
tegrity of the routing hierarchy, identify and isolate individual
attackers.

3 TRAIL – Trust Anchor Interconnection
Loop

We introduce TRAIL, our generic approach to detect and
prevent topological inconsistencies. In contrast to the previ-
ous approaches, each node is enabled to validate its upward
path to the root and to detect rank spoofing on it. Our test
furthermore identifies the largest sub-DODAG(s) affected by
non-monotonous rank order. Having learned such inconsis-
tency, the root of that sub-DODAG may either trigger a local
repair, or disconnect its malicious sub-tree and rely on alter-
nate paths. In the following, we treat ranks as monotonously
increasing integers. It is noteworthy that any RPL rank func-
tion is monotonous and can be reverted to an integer chain.

3.1 TRAIL Idea: Path Validation
The key idea of TRAIL is to validate upward paths to

the root using a round trip message. Without relying on
encryption chains as in VeRA(++), a node can conclude rank
integrity from a recursively intact upward path.

A child node that received a rank advertisement from its
parent initiates a positive attestation of the rank as follows.
It sends a test message with a random nonce η upwards to
its parent. The parent adds its rank j and forwards the test

message 〈 j,η〉 upstream towards the root. At each interme-
diate hop, the receiving upper node verifies that (a) the rank
in the test message is higher than its own, and (b) the rank of
the sending node lies in between the rank of the test message
and its own. If a rank violation is observed, the test message
is discarded and the sub-DODAG gets either disconnected
or a local repair is started (see Fig. 2). The test message
eventually arrives at the root, which adds the current version
number to the test message and signs for its way back to
the initiating client. Before forwarding, every node verifies
whether the signed message contains the scribed rank j that
is larger than its own rank. A violation stops the propagation
of the message. On reception, the client verifies the signa-
ture, matches its nonce, and obtains evidence of the current
version number and the rank advertised by its parent. As the
rank announcement had consistently travelled to the root, no
honest node on the path had observed a rank violation and
the upstream is valid. A child not receiving the reply, contin-
ues without positive attestation of its parent. It may choose
another upstream, if available, or apply additional measures
for transport security.

After all nodes have applied this test recursively down the
hierarchy with success, it is assured that none of the nodes has
a parent that illegally lowered its rank. The highest ranked
node that unsuccessfully performs the test identifies the root
of the largest sub-DODAG affected by rank spoofing. It
should be noted, though, that a directly connected chain of k
malicious nodes can secretly replay rank values k−1 times
so that they are counted in the test as one node. However, this
costly attack does not decrease rank values of the attackers,
but solely extends the wireless reach of the malicious group
and cannot be observed without surveillance of the wireless
geometry.

As every node in the network needs to inquire with the root
individually, the overhead in messages and signature process-
ing grows linearly with the network size. Hence, this simple
scheme of path validation suffers the obvious drawback of
scalability. In the following, we will present an aggregated
scheme that keeps messages per node and signature computa-
tion constant.
3.2 Scalable Path Validation
3.2.1 Rank Attestation Scheme

The path validation can be turned into a scalable procedure
by aggregating all client-specific inquiries into a single mes-
sage exchange. Starting from the leaf nodes of a DODAG,
we design a convergecast that reaches up to the root. The
root node receives and signs a single, converged request that
serves as a universal path attestation message when distributed
downtree via multicast.

After a leaf node Nl,k of the DODAG has received the
rank advertisement of its parent (and discovered that it has
no further children), it issues a nonce ηl,k to its parent. The
parent node collects the nonces {ηl,k}k of all children and
writes them into a single array element. For space efficiency,
the parent combines the nonces in a Bloom filter [15]. Note
that this Bloom filter can be very short, as the number of
entries is limited by the number of children per node. This
array element containing a single Bloom filter is sent upstream
to the grandparent and saved by the node.

rank:1
...

R

H

4

1

2

3

rank: 4

rank: 5

rank: 6

M

5
5

3

5 5

5

5

4

4

4

4

2
3
4
5

5
4 4 4

3
4
5

2

Figure 3. TRAIL RANK ATTESTATION

From each of its children, the grandparent receives such
an array of Bloom filters together with an individual nonce. It
should be noted that these arrays need not be of equal lengths,
as the tree may be unbalanced. The grandparent aligns every
array on the position below the child node rank and merges
the entries of equal index using the scalable Bloom filter
technique of Almeida et al. [16]. In detail, the grandparent
node extracts all first index elements Ai(1), merges them
and writes the result to a new output array B at the index 2
(incremented by one). In general, {Ai(k)}i are merged into
B(k+1), if existent. Finally, the node adds the Bloom filter
that aggregates all nonces of its immediate children to the
array element B(1) forwards the array B upwards together
with its own nonce and saves both B and its nonce.

As depicted in Fig. 3, in proceeding this way stepwise
towards the root, an array is created whose index represents
the rank and whose values are merged Bloom filters of all
nonces issued at a specific rank. Thereby array elements
are of variable length, each accommodating the concatenated
Bloom filters as generated according to the shape of the tree.
Additionally every node on the path saves the array and nonce
they forward for latter validation. The root node adds the
current version number and signs the data structure consisting
of the Bloom filter array and the version number. Thereafter,
the signed data is distributed via multicast down the tree.

On the reception, each node can verify the version, and the
rank of its parent. It accesses the corresponding array element
to match its nonce in the Bloom filter and verifies that no
further array element contains the same nonce. Finally, it
verifies that the signed Bloom filter array does not contain
less nonces than the previously saved array. Note that the
probability of a false positive hit can be chosen sufficiently
low when configuring the Bloom filter. A successful match
testate that ranks have increased monotonically from the root
downwards and that the array and contained nonces have not
been manipulated or reordered. Whenever the matching fails,
monotonic rank order has been violated on the upward path
from the current node to the root. The highest ranked node
detecting such violation forms the root of an inconsistently
connected sub-DODAG. Any node experiencing such incon-

sistency may choose another upstream, if available, or apply
additional measures for transport security.
3.2.2 Security Proof

We show that a malicious node cannot improve its rank by
modifying the data structure, and that improper modifications
are detected in the verification phase.
Assumptions. We rely on the attacker model specified in Sec-
tion 2.1. In particular, we refer to an attacker that has no
means to establish an out-of-band communication channel.
A chain of k malicious neighbors is considered as one at-
tacker with an extended wireless reach. Distributed attackers
scattered among different hierarchy levels communicating
out-of-band channel cannot be detected and are not consid-
ered in our model. However, non-collaborating attackers
distributed in the topology are considered. Finally, we ignore
the false positive rates on queries to bloom filters as they can
be made arbitrarily small by choosing appropriate parameters.
PROOF. We consider the security of TRAIL in existence of i)
multiple non-collaborating malicious nodes and ii) multiple
malicious nodes with limited collaboration:

i) Multiple non-collaborating malicious nodes: Since the
nodes are not allowed to collaborate, they can be considered
as multiple single attackers. For simplicity, we provide the
analysis for a single malicious node. A malicious node receiv-
ing a topology test message 〈η,A〉 from its child(ren) has the
option to (1) not include its child(ren) in the message array
or to not merge-and-forward the array A at all. It may as well
(2) rearrange the array, and in particular include the nonces of
its child(ren) at a wrong array position. It may (3) attempt to
exclude itself from the attestation hierarchy by not submitting
its nonce value to its parent. These four choices of malicious
nodes will lead to the following conditions:
C1. By not forwarding the test nonces of its children or the

attestation array, the malicious node causes its imme-
diate detection. When receiving the signed attestation
message of the root, the child(ren) of the malicious node
will test for its nonces without success and detect the
inconsistency.

C2. The best a malicious node can do to its children is writing
nonces at the foreseen position. Any misplacement will
move data of the children to a lower rank position and
thus cannot be aligned with a malicious rank upgrade.
Other rearrangements of the array will change the data
positions for nodes lower in the tree. This implies that
affected nodes are not within the wireless transmission
range of the malicious node – they had chosen the better
rank of the malicious node otherwise. As the malicious
node cannot coordinate rank advertisements outside its
wireless reach, nodes will remain unaware of their nonce
moving to other rank positions. Nodes will thus search
at the original rank position in the attestation message
and corresponding tests will fail.

C3. If the malicious node withholds its own nonce, but co-
operates in traversing the merged filter array, its honest
parent will merge the data with data from its other chil-
dren and insert at the proper position. Not delivering
the nonce will simply lead to a Bloom filter that does
not contain the nonce of the malicious node. Hence, an

malicious node causes nothing but excluding itself from
the verification process.

ii) Multiple malicious nodes with limited collaboration:
We mean by a limited collaboration that multiple attackers
know in advance their position in the topology and the de-
sired rank which they want to claim during an attack. This
can be realized by configuring them accordingly during their
deployment. Limited indicates that once they are deployed,
those malicious nodes, which are not within each other’s com-
munication range, cannot communicate anymore. TRAIL
mitigates such attacks as follows: A malicious node close
to the root merges array elements on behalf collaborating
malicious nodes lower in the topology that claim a false rank.
Consequently, nonces of honest nodes that are affected by
the rank spoofing, are moved to the correct array element.
However, due to the malicious merging of array elements,
these nonces exist multiple times. Such a duplicate either
denotes a fraud or a false positive. Given a false positive rate
of f , we detect the attack with probability 1− f . Deleting
nonces from filters will cause that an honest node on the path
will detect the attack by comparing the forwarded array with
the signed one.

In any of the cases, forgery will not comply to a rank
decrease and will be detected, whenever it affects third party
nodes. All parents of a malicious node will always exclusively
write to the lower rank-test positions, which is the obvious
protection from rank spoofing in this procedure.
3.2.3 Details of the Bloom Filter

We use Bloom filters [15], a space-efficient random data
structure, to reduce message lengths in our attestation scheme.
A Bloom filter is defined as a bit-vector, v of m bit and repre-
sents a data set. By using k independent hash functions, each
element of a set of A = {a1, . . . ,an} is mapped to k bits in v.
By these means, the size of each input element is reduced to
at most k bits. Due to randomized overlapping of bits from
different elements, the size may be reduced even further, but
this may return a false positive result of a query. Essentially,
there is a linear relation between number of bits used for stor-
ing each element, and the false positive rate. Mitzenmacher
[17] could show that properly designed Bloom filters can be
compressed even further by about 30 % at a given false posi-
tive rate. Almeida et. al. [16] designed a scalable extension of
Bloom filters that linearly add filter elements with increasing
set sizes.

In TRAIL, we require tiny Bloom filters that store nonces
from the children set of a single node. For a commonly small
fanout of k nodes and a false positive rate below 1%, an
appropriate bit-size m of the (compressed) Bloom filters can
be estimated as m = 6k [bits].

4 Performance Evaluation
To evaluate the performance of our RPL security scheme,

we have implemented TRAIL authentication (attestation and
announcement messages) as an extension to the existing RPL
protocol implementation on the RIOT platform [18]—an inte-
gration of TRAIL in RPL ICMP control messages has little
effect on performance and is left to future protocol engineer-
ing work. We deployed TRAIL on the DES Mesh Testbed of
FU Berlin [19] and performed the comparative experiments

7 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0
1
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

Av
era

ge
 M

es
sa

ge
 Si

ze
 [B

yte
s]

N e t w o r k S i z e [N o d e s]

 k = 2
 k = 3
 k = 4
 k = 5

Figure 4. TRAIL MESSAGE SIZES: Average message
size distribution for varying fanout degrees k as functions
of the network size.

Table 1. Message overhead for different network sizes:
(k= number of children, h=height of the tree)

Network Configuration Message Overhead [Bytes]

k h #
Nodes

Msg.
per node

Average
Size

Max.
Size

2
3 15 2 3.5 10.5
4 31 2 7.5 22.5
5 63 2 15.5 46.5

4
3 85 2 12.6 63
4 341 2 51 255
5 1365 2 204.6 1023

described below. The focus of our evaluation lies on the
overhead cost and the temporal performance of TRAIL in
comparison to unmodified RPL routing. The critical cost met-
rics for wireless sensor nodes are over the air transmission,
e.g., the number of messages sent, as well as message sizes.

First we analyze the message characteristics of TRAIL
as a function of the network size. The critical resource con-
sumption of TRAIL is given by the sizes of the attestation
messages. As nodes need to accumulate nonce values of
their parent nodes, the attestation array grows with increasing
network sizes. While messages are tiny at the leaf nodes,
the array gets larger towards the root node. Fig. 4 visualizes
the average message sizes for different fanout degrees k of
the inner nodes as functions of the total network size. For
simplicity, we assume balanced k-ary trees, but results are not
strongly dependent on tree shapes. It is clearly visible that
small message sizes compliant to 6LowPAN MTUs constrain
network dimensions by about ≈ 250 nodes. The character-
istic performance aspects of TRAIL for different network
sizes and tree configurations are summarized in Table 1, from
which we can extract the extra traffic imposed by TRAIL:
Two messages per node at the given size distribution.

Our second evaluation targets at the temporal performance
of route convergence. We deployed TRAIL on 25 MSBA2
nodes distributed in the sensor network testbed and compared
with an identical pure RPL installation. RPL/TRAIL arranged
a DODAG with the highest rank of eight as visualized in Fig.
5(a). Choosing an attacker (node 60) to announce a root
rank led to a break up of the pure RPL network. Only seven

69

60

57

66

65

64

37

36

49

8

63

46

62

6

11

5 24 13 17

54 58

47

48

50

55

(a) EXPERIMENTAL DODAG WITH ATTACKER

6 9 6 4 6 5 6 6 4 6 6 2 8 4 9 3 6 3 7 6 3 6 5 7 5 4 1 1 6 0 5 8 4 7 5 4 8 5 0 5 5 2 4 1 3 1 7
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

R P L R a n k 7 854 62 3

Co
nv

erg
en

ce
 Ti

me
 [s]

N o d e I d

 T R A I L O v e r h e a d
 R P L B a s e L o a d

1

(b) ROUTING CONVERGENCE TIMES IN RANK ORDER

Figure 5. Per node performance in joining the DODAG: Pure RPL and the TRAIL overhead as observed in the testbed.

nodes remained in the initial, upright network, while 17 nodes
reconnected to the bogus tree. TRAIL discovers and isolates
the attacker immediately with its (bogus) rank announcement.
As a consequence, TRAIL rearranged a connected tree of all
honest neighbors, excluding the bogus node.

Routing convergence times for tree construction were mea-
sured node-wise during the experiments. Comparisons be-
tween the pure RPL and the overhead induced by TRAIL are
plotted in Fig. 5(b). Naturally, the wireless ad-hoc regime
produces large variations that are visible for both, RPL and
TRAIL. Nevertheless, the additional times needed to join a
DODAG while performing the security extensions of TRAIL
remain below 20 % in most cases. Occasional authentica-
tion messages exceed this limit due to message loss and re-
transmissions. However, such performance fluctuations are
characteristic for all mesh routing operations including RPL.
5 Conclusions & Outlook

This work focuses on routing security of RPL, a recent
routing protocol for the emerging Internet of Things. Intrinsi-
cally, RPL is vulnerable to topology attacks and the current
state of the art leaves relevant security issues unresolved.

The contribution of this paper is TRAIL. TRAIL defines
a test procedure to inquire on the actual path properties of
the routing system. This generic approach is built on first-
hand principles and – different from previous work – requires
almost no cryptography. Its main cryptographic workload
is carried out by the root node, which acts as a (stronger)
gateway in typical RPL deployments. TRAIL is designed
to minimize network message exchanges and node resource
consumption. Our evaluations revealed that the transmissions
of bits required by TRAIL remain feasible for typical chal-
lenged environments, and that a testbed of typical shape can
well operate TRAIL with limited additional effort. Future
directions of this work are twofold. First, we will optimize
our algorithms further to reduce dependency on network sizes.
Second, we intend to apply the TRAIL approach proposed
for RPL to other routing protocols.
6 References

[1] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” IETF, RFC 6550, March 2012.

[2] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder,
“A Study of RPL DODAG Version Attacks,” in Monitoring and Secur-
ing Virtualized Networks and Services, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2014, vol. 8508, pp. 92–104.

[3] A. Dvir, T. Holczer, and L. Buttyan, “VeRA - Version Number and
Rank Authentication in RPL,” in IEEE 8th International Conference
on Mobile Adhoc and Sensor Systems (MASS), Oct. 2011, pp. 709–714.

[4] T. Tsao, R. Alexander, M. Dohler, V. Daza, A. Lozano, and M. Richard-
son, “A Security Threat Analysis for the Routing Protocol for Low-
Power and Lossy Networks (RPLs),” IETF, RFC 7416, January 2015.

[5] O. Gaddour and A. Koubâa, “RPL in a nutshell: A survey,” Elsevier
Computer Networks, vol. 56, no. 14, pp. 3163–3178, Sep. 2012.

[6] T. Markmann, T. C. Schmidt, and M. Wählisch, “Federated End-to-End
Authentication for the Constrained Internet of Things using IBC and
ECC,” in Proc. of ACM SIGCOMM, Poster. 2015, pp. 603–604.

[7] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the First
Intern. WS on P2P Systems. London: Springer, 2002, pp. 251–260.

[8] A. Mayzaud, R. Badonnel, and I. Chrisment, “A Taxonomy of Attacks
in RPL-based Internet of Things,” International Journal of Network
Security, vol. 18, no. 3, pp. 459–473, May 2016.

[9] A. Le, J. Loo, Y. Luo, and A. Lasebae, “Specification-based IDS for
securing RPL from topology attacks,” in IFIP WD, Oct. 2011, pp. 1–3.

[10] K. Weekly and K. Pister, “Evaluating Sinkhole Defense Techniques in
RPL Networks,” in Network Protocols (ICNP), Nov. 2012, pp. 1–6.

[11] L. Wallgren, S. Raza, and T. Voigt, “Routing Attacks and Countermea-
sures in the RPL-based Internet of Things,” Int. J. of Distributed Sensor
Networks, vol. 2013, no. 794326, June 2013.

[12] A. Mayzaud, A. Sehgal, R. Badonnel, I. Chrisment, and J. Schönwälder,
“Mitigation of Topological Inconsistency Attacks in RPL-based Low-
power Lossy Networks,” International Journal of Network Manage-
ment, vol. 25, no. 5, pp. 320–339, 2015.

[13] M. Landsmann, H. Perrey, O. Ugus, M. Wählisch, and T. C. Schmidt,
“Topology Authentication in RPL,” in Proc. of the 32nd IEEE INFO-
COM. Poster. Piscataway, NJ, USA: IEEE Press, Apr. 2013.

[14] H. Perrey, M. Landsmann, O. Ugus, M. Wählisch, and T. C. Schmidt,
“Topology Authentication in RPL,” Open Archive: arXiv.org, Technical
Report arXiv:1312.0984, December 2013, 2015.

[15] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[16] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
Bloom Filters,” Inf. Process. Lett., 101 (6), pp. 255–261, March 2007.

[17] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Netw., vol. 10, no. 5, pp. 604–612, Oct. 2002.

[18] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt,
“RIOT OS: Towards an OS for the Internet of Things,” in Proc. of the
32nd IEEE INFOCOM. Poster. IEEE Press, 2013.

[19] M. Günes, B. Blywis, F. Juraschek, “Concept and design of the hybrid
distributed embedded systems testbed,” FU Berlin, TR-B-08-10, 2008.

