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Abstract
In this paper, we contribute a comprehensive resource

analysis for widely used cryptographic primitives across dif-
ferent off-the-shelf IoT platforms, and quantify the perfor-
mance impact of crypto-hardware. This work builds on the
newly designed crypto-subsystem of the IoT operating sys-
tem RIOT, which provides seamless crypto support across
software and hardware components. Our evaluations show
that (i) hardware-based crypto outperforms software by con-
siderably over 100 %, which is crucial for nodal lifetime.
Despite, the memory consumption typically increases mod-
erately. (ii) Hardware diversity, driver design, and software
implementations heavily impact resource efficiency. (iii) Ex-
ternal crypto-chips operate slowly on symmetric crypto-
operations, but provide secure write-only memory for private
credentials, which is unavailable on many platforms.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Measurement, Performance, Security

Keywords. Internet of Things, Embedded Security

1 Introduction
Security is an essential building block for the Internet

of Things (IoT). Data confidentiality, integrity, and avail-
ability rely on crypto-operations that are often resource-
intensive and in conflict with device constraints. Neverthe-
less, software updates, access management, and data encryp-
tion rely on these crypto-operations. To enable usable se-
curity in the low-end IoT, cryptographic primitives should
be highly optimized and utilize the constrained hardware
most efficiently—including possible crypto-extensions. This
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Figure 1. The software support layer of RIOT integrating
crypto-peripherals, external crypto-devices, and crypto-
libraries using a common crypto API.

poses a severe challenge, since hardware support is heteroge-
neous and ranges from extended instruction sets to complete
implementations of popular algorithms such as AES.

Figure 1 presents three common options to enable se-
curity in the constrained IoT. (i) cryptographic software li-
braries that try to cope with embedded constraints, (ii) mi-
crocontrollers that include a crypto-peripheral, (iii) external
crypto-devices that connect to the microcontroller using a
communication bus. Software libraries do not exploit crypto-
hardware for portability reasons, and manufacturer SDKs
(on bare metal) reduce flexibility towards a vendor lock-in.

More and more IoT deployments utilize an operating sys-
tem (OS) to keep applications portable while gaining near-
optimal hardware support via an abstraction layer. A key
motivation of this work is to make heterogeneous hardware
components uniformly accessible for both crypto-libraries
and applications, and to quantify its resource gain. Up until
now, platform-agnostic support of crypto-hardware is rarely
available at an IoT system level.

In this paper, we argue that an IoT OS should provide uni-
fied APIs to grant access of available hardware without sac-
rificing performance nor functionality. We will report about
the various challenges that derive from heterogeneous hard-
ware concepts as well as tight resource constraints and how
to over these by trading software for hardware without sacri-
ficing efficiency.
The contributions of this paper are the following:
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1. We present design tradeoffs for integrating different
types of crypto-drivers, and introduce our crypto-
subsystem to the IoT operating system RIOT (§ 2).

2. A brief overview of hardware crypto platforms (§ 3).

3. A comparative performance study of five software li-
braries (§ 4), basic symmetric and asymmetric cryptog-
raphy implemented on four hardware platforms (§ 5),
and advanced Elliptic Curve Cryptography (ECC) (§ 6).
Our results indicate that hardware is not always the
most efficient solution.

4. A detailed system benchmark of vendor drivers indicate
optimization potentials (§ 7).

5. Our software is available on https://github.com/
inetrg/EWSN-2021.

2 A Crypto-Subsystem in RIOT
We now introduce the design and implementation of

a crypto-subsystem that integrates hardware with software
components and allows for a fair comparison across multi-
ple platforms and libraries. We base our implementation on
RIOT [8], an open-source operating system for low-end IoT
microcontrollers.

We decided for RIOT because it runs on many architec-
tures (from 8-bit over 16-bit to 32-bit processors), provides
multi-threading with a scheduler supporting fixed priorities
and preemption, power management [36], and a powerful
hardware abstraction layer. Security protocols utilize crypto-
graphic functions, which are currently implemented as soft-
ware solutions at the system level [18].

Alternatively, the package system can be used to in-
tegrate external libraries. RIOT includes wolfCrypt [43],
an embedded library for symmetric and asymmetric crypto,
Cifra [10] which implements common building blocks
for symmetric crypto, TinyCrypt [20] and micro-ecc
(uECC) [21], both particularly minimizing memory, and
Relic [4], which contributes a comprehensive list of sym-
metric and asymmetric cryptographic schemes with partic-
ular support for many elliptic curves. As such, these third-
party libraries are not implemented against any OS APIs, yet.
Our design concept integrates these components in a generic
fashion and extends to further hardware platforms and li-
braries in a straightforward manner.

2.1 Design Considerations
The operating system grants access to cryptographic hard-

ware. A driver controls the device and implements an agnos-
tic OS API. In five sample use cases of this paper, vendors
provide a library to access low-level operations. We now
consider design aspects of how to integrate these and future
cryptographic components.
2.1.1 Vendor Driver Integration

Capabilities of vendor drivers vary widely. We argue for
using these implementations, though, to take advantage of
specific vendor knowledge, testing, and to allow for sustain-
able maintenance. The package subsystem in RIOT clones,
builds, and links external repositories during firmware com-
pilation. In this way, third-party software does not require
maintenance within the OS and can easily be updated. We

implement vendor libraries as RIOT packages and provide
software wrappers to integrate external code into the subsys-
tem. It is noteworthy, that vendor libraries do not always
perform at maximum performance since they are commonly
implemented in a generic way, as we will show in Section 7.
2.1.2 Context Abstraction

Cryptographic functions operate on an internal state (con-
text struct). It is allocated for each driver instance and
depends on the exposed state by a vendor implementa-
tion which includes hardware specific elements internally.
When facing the OS, a context struct must abstract ven-
dor specifics and implement common OS interfaces. Hence,
every driver defines a common context struct, containing
vendor specifics and optional elements to facilitate the OS
integration. Consequently, users of the API must not deref-
erence the context struct since it changes with different
backends. This design decision prevents parallel operation
of different backends for the same function. We argue that
this is in line with common IoT deployments for three rea-
sons: (i) Single-core OSes are not optimized for parallel pro-
cessing because real-world IoT firmware is tailored to a sin-
gle application. Consequently, excessive parallelization of
crypto-operations is not expected. (ii) Computational and
memory resources are scarce on constrained IoT devices.
Our context abstraction keeps complexity low. (iii) The per-
formance of crypto-peripherals increases software solutions
by one order of magnitude (see Section 5), thus, successive
hardware operations already outperform software notably.
2.1.3 State Handling

Applications of cryptographic primitives are manifold, in-
cluding security protocols or pseudo-random number gener-
ators, and may require individual maintenance of a crypto-
functions state. We enable external memory allocation and
state handling in our approach. Software implementations
operate on an allocated struct in RAM. Cryptographic pro-
cessors may reduce operations to one at a time, provided
they rely on a single hardware state. This inflicts to read,
save, and restore the hardware state between operations to
achieve state independence. Especially for external proces-
sors, this increases completion time and RAM requirements
to replay and store hardware contexts. We implement an op-
tional read–save–restore behavior for such devices and eval-
uate the overhead in Section 7
2.1.4 Concurrent Access

Cryptographic processors need protection against concur-
rent access. Certain vendor drivers implement mutexes in-
ternally, while others require protection by the OS. It is note-
worthy, that hardware devices require protection and not a
single crypto-function, since processors are commonly sin-
gle resources. We lock/unlock a mutex per device before
and after every hardware access. Few microcontrollers pro-
vide hardware acceleration units with more than one crypto-
peripheral, which can operate in parallel. In that case, each
device must be protected separately against concurrency.
Dual-accelerators promise throughput enhancements when
crypto is heavily used. We implement a management in-
stance to the driver which is requested internally before every
crypto-operation and delivers the next free device.
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Table 1. Overview of typical on- and off-chip IoT hardware with their crypto-acceleration features that we analyze.

Feature

MCU/
Board/
Library

nRF52840 (@64 MHz)
Nordic nRF52840dk

CryptoCell

EFM32(PG12) (@40 MHz)
Silicon Labs Pearl Gecko

EMLIB

MKW22D (@48 MHz)
Phytec IoT Kit 2

mmCAU

ATECC608A (I2C@400kbps)
Adafruit ATECC608

CryptoAuthLib

TRNG 3 3 3 3
SHA-256 3 3 3 3
HMAC-SHA256 3 8 8 3

AES-128 ECB, CTR, CBC,CCM(*)
CMAC/CBC-MAC

ECB, CTR, CBC,CCM(*),CFB
CBC-MAC, PCBC,GMAC,GCM 3 ECB, GCM

AES-256 3 3 8 8
ChaCha20/Poly1305 3 8 8 8

ECC
secp160k/r1, secp192k/r1,secp224r/k1,

secp256k/r1, secp384r1, secp521r1
Ed25519, Curve25519

secp192r1, secp224r1, secp256r1,
sect163k1, sect163r2, sect233k/r1, 8

secp256r1
(P-256)

ECDSA / ECDH 3 8 8 3
RSA 3 8 8 8
Secure memory 128-bit 5 x 256-bit 256-bit 16 Key Slots

2.1.5 Low Power Management
Low energy consumption is a core requirement in the IoT.

Active peripherals prevent devices from sleep and consume
energy. It is an obvious design choice to keep active time
of a crypto-device at minimum, hence, the OS integration of
a driver should enable hardware only when used. This per-
forms efficient on peripherals that turn on and off fast. Other
devices (e.g., external chips), however, require additional re-
sources during initialization, which is inefficient when re-
quested excessively. To deal with on/off patterns, we fol-
low two different approaches. (i) Devices that turn on fast
are powered only during operation. This aligns well with
the concept of other peripheral drivers in RIOT. (ii) Devices
with long wakeup sequences are not unconditionally set to
sleep after usage, since concurrent applications might re-
quire crypto access. Instead, we implement a user counter
that increments on device allocation and decrements on re-
lease. The device is turned off when the counter decrements
to zero. Vendor drivers commonly operate synchronously,
hence, our approach only affects preempted driver calls. On
the downside, successive requests from a single context will
not benefit and require a manual power switch which we an-
alyze in Section 7.
2.2 Integration of Crypto Modules

RIOT currently supports 208 boards and 117 different mi-
crocontrollers, all of which exhibit varying crypto-hardware
capabilities. To allow for the implementation and use of
crypto-based applications without considering the current
hardware setup upfront, we design (i) a hardware-agnostic
API and (ii) the dynamic configuration of the crypto-
subsystem. We use a feature model to represent crypto-
hardware capabilities to the build system. Our approach se-
lects and compiles hardware features where possible, and ad-
ditionally provides an extended configuration interface to the
user. This generic approach is capable of handling any hard-
ware component, provided it is correctly modeled.
2.2.1 Module Design

Our layered approach to interface with different crypto-
backends introduces two types of APIs that are exposed to
the user: (i) The basic cryptographic API provides direct ac-
cess to low level functions, for example, a single AES block
encryption. (ii) The cryptographic mode API grants access

to operation modes of crypto primitives, for example, config-
uring AES in Cipher Block Chaining (CBC), or Electronic
Code Book (ECB) mode. Different backends are modeled
as modules, each of them is a translation unit that provides
an implementation of one public API, which allows specific
selection by the build system.

A backend module (i.e., a driver) can support one of
the three levels of crypto-acceleration in hardware: (i) Full
hardware acceleration, (ii) partial hardware acceleration, and
(iii) no hardware acceleration. The first level is given by
peripheral-, or external devices that provide full hardware
support for a cryptographic mode (e.g., AES CBC). The sec-
ond level occurs when hardware support is only available for
basic cryptographic operations. In that case, the operation
mode (e.g., CBC) is performed in software and needs access
to basic cryptographic primitives (e.g., AES block encryp-
tion). The software component, however, is agnostic to the
specific cipher or hash in use. The third level represents the
case with missing hardware acceleration units. Our abstrac-
tion of the cryptographic API allows to switch backend im-
plementations seamlessly.

2.2.2 Feature Model

We use Kconfig [40] to select compiled modules dur-
ing the build process. Kconfig allows to define symbols
which specify dependencies and conditional default val-
ues. A user can interact with Kconfig using existing tools
(e.g., menuconfig) to configure the values of a symbol. Each
block in our crypto-stack is modeled as a Kconfig sym-
bol. Hardware capabilities are represented as non-visible
boolean Kconfig symbols that indicate the availability of
crypto-hardware. Crypto APIs are implemented as boolean
choice symbols, which allows for a transparent replacement
of crypto-backends. Consequently, Kconfig provides a list of
exchangeable modules, which are mutually exclusive. The
default activation of a module is handled by Kconfig which
selects the module combination, given the hardware capabil-
ities of the underlying platform. A user can still manually
overwrite the default selection.
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Table 2. Performance of SHA-256 on 64 Byte inputs im-
plemented in different software on the nRF52840.

Processing Time Memory

Impl. Init
[µs]

Update
[µs]

Final
[µs]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[kB]

Relic 1.00 97.25 90.25 116 1000 110 1.3
RIOT Core 1.08 112.40 119.40 104 600 74 1.3
wolfCrypt 5.13 69.25 68.87 112 600 74 1.8
TinyCrypt 13.75 97.75 97.25 112 600 74 1.2
Cifra 12.62 85.75 113.40 104 616 74 1.2

3 Measurement Setup
3.1 Platform Overview

Table 1 summarizes the hardware and its features that we
use in our evaluation. We omit legacy algorithms, and deploy
our experiments on state-of-the-art (nRF52840 and EFM32)
as well as older (MKW22D) microcontrollers with periph-
eral crypo-acceleration. nRF52840 and EFM32 are a good
representation of the current generation of devices with ad-
vanced crypto-peripherals that were designed for flexible de-
ployment in general use cases. Furthermore, we use the ex-
ternal crypto-chip (ATECC608A), connected via an I2C bus.
ATECC608A represents a series of external security devices
that are protected against side channel attacks.

All platforms provide a true random number generator
(TRNG), of which all except the MKW22D comply with
NIST standards (cf., [22] for background on embedded ran-
dom number generation). The ATECC608A implements a
crypto-secure pseudo-random number generator (CSPRNG),
which is seeded from a true random source in hardware.
EFM32 and MKW22D deploy software assisted HMAC
SHA-256 that utilizes hardware hashing. nRF52840 and
EFM32 support multiple cipher modes in hardware, contrast-
ing MKW22D and ATECC608A, which need software assis-
tance. ECC is available on all platforms but MKW22D.

The nRF52840 and EFM32 offer secured key registers for
performing crypto-operations, and the MKW22D has a tam-
per protected register. The ATECC608A has 16 non-volatile,
write-only memory slots to store secret elements. Keys are
generated and maintained on the external device to prevent
unauthorized access and erase on tamper detection.

3.2 Measured Resources
We measure processing time, energy consumption, and

memory overhead and repeat experiments 1000 times pre-
senting averages, if not mentioned otherwise. To allow for a
fair comparison, all software runs on RIOT version 2020.07.
Processing time. We evaluate the processing time with a
logic analyzer that samples at 12 MS/s by toggling an I/O
pin via direct register access on the test device. Using this
setup the measurement overhead remains negligible.
Energy consumption. We connect our test platform to a reg-
ulated voltage supply (Siglent SPD3303C) and evaluate the
current consumption of each operation using a digital sam-
pling multimeter (Keithley DMM7510 7 1/2) at 1 MS/s. A
measurement period is marked by toggling I/O pins. To by-
pass unrelated current flows, we connect our probes in series
with the MCU and turn off unused hardware components (by

Table 3. Performance of a single block AES-128 opera-
tion implemented in different software on the nRF52840.
RAM is 38 Byte for all platforms.

Processing Time Memory

Impl. Init
[µs]

Enc.
[µs]

Dec.
[µs]

Ctx
[B]

Stack
[B]

ROM
[kB]

Relic 3.00 57.42 88.03 577 1476 13.8
RIOT Core 3.25 38.17 71.17 20 508 4.7
wolfCrypt 0.67 51.50 86.42 284 780 11.7
TinyCrypt - 225.70 659.90 176 668 2.6
Cifra
unprotect. 49.37 60.37 77.25 180 732 1.7

protect. 1617.10 6338.12 6353.87 180 732 1.9

hardware switches or in software). We measure the current
of ATECC608A on the external chip, only, for better com-
patibility. In practice, the nRF52840 is used to operate the
device, which might sleep during crypto-operations.
Memory requirements. We evaluate the memory con-
sumption and consider compile- and runtime properties. Our
compile time measurements show the overhead on top of a
minimal RIOT build by analyzing the ELF file. We accu-
mulate all linked objects that are associated with a crypto-
implementation. Numbers are differentiated w.r.t. to RAM
and ROM memory. Runtime memory requirements include
the size of data structures and the maximum amount of stack
memory that has been used during execution.

4 The Impact of a Software Implementation
Table 2 and 3 compare the impact of different SHA-256

and AES-128 software implementations provided by com-
monly available crypto-libraries in RIOT that we ran on the
nRF52840 platform. In both cases, we applied the crypto-
graphic function to an input vector with the size of one inter-
nal block (i.e., 64 Byte for SHA-256 and 16 Byte for AES-
128).

Relic, TinyCrypt, and Cifra require 190–210 µs for an
init-update-final sequence to process a SHA-256 digest.
Cifra is faster during update on the price of longer finaliza-
tion caused by an extra copy of the hash value. RIOT Core is
20 µs slower because it involves repeated modulo operations
during state update (FIPS PUB 180-4). Furthermore, RIOT
includes multiple endianness conversions to operate on 32-
bit arithmetic. wolfCrypt provides a highly optimized imple-
mentation with an unrolled mixing loop, at higher memory
consumption. Disabling this optimization increases the pro-
cessing overhead of update and final to approximately 100 µs
each, but it reduces ROM requirements by 500 Byte. Context
sizes and stack usage are similar in all implementations, ex-
cept for Relic that uses 400 Byte additional stack for a global
array with initial hash state values.

The impact of different software implementations be-
comes more pronounced for AES-128. Initialization is fast
in RIOT, wolfCrypt, and Relic taking at most about 3 µs to
initiate state and the AES key length. TinyCrypt does not
expose a separate API call for initializing but handles it in-
ternally. In contrast, Cifra contains the key schedule (FIPS
PUB 197) already on initialization which takes up to 50 µs.
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wolfCrypt, Relic, and TinyCrypt provide a dedicated API to
trigger AES key expansion, while RIOT handles the expan-
sion on every en-/decrypt call. In Table 3 we include key
expansion overhead in the en- and decrypt column, except
for Cifra.

Encryption is by a factor of 1.5–3 faster than decryption
for the additional key inversion during decrypt [12]. RIOT
provides the fastest implementation for a single block, fol-
lowed by wolfCrypt and Relic. Their implementations base
on pre-calculated look-up tables (T-tables) which is a speed
optimization for 32-bit platforms. Cifra (w/o protection) and
TinyCrypt implement the default algorithm based on a sub-
stitution table (S-box). Surprisingly, the S-box implementa-
tion in Cifra (w/o protection) scales similar to the T-table
approach, whereas TinyCrypt operates 4–10 times slower.
This is due to multiple copies between the internal and exter-
nally provided state, as well as explicit clearing of the inter-
nal memory. Lookup table implementations are vulnerable
to side channel attacks [7, 41], especially cache attacks, why
Cifra (w/ protection) provides countermeasures by default,
that increase the runtime by a factor of 100.

Context sizes vary widely. RIOT allocates only 20 Byte
for one context, of which 16 Byte represent the internal AES-
128 state. Cifra and TinyCrypt keep the expanded key (mul-
tiple “round keys”) in their context structure, which increases
memory by up to 180 Byte. In that way, round keys do
not have to be re-calculated when encrypting repeatedly on
one AES context. In contrast, working on multiple contexts
heavily increases RAM consumption. wolfCrypt and Relic
follow a similar approach, though, both structs are not tai-
lored to 128 Bit keys. wolfCrypt unconditionally allocates
memory for 256 Bit keys and Relic additionally stores raw
keys and initialization vectors that are used for cipher modes.
The stack usage correlates to the context sizes. Memory
overhead in ROM is more distinctive. wolfCrypt and Relic
store complete T-tables (10 buffers of 1024 Byte), whereas
RIOT only stores half of them and generates the remaining
values on demand. TinyCrypt and Cifra attain the smallest
ROM footprint based on minimized lookup tables.

5 Basic Crypto-Hardware Acceleration
Next we compare the performance of basic cryptographic

operations between hardware and software, using the crypto-
hardware discussed in Section 3.1. Software results are
obtained from RIOT core on the same platforms but with
crypto-hardware turned off.

5.1 Processing Time
Figure 2 shows the processing time for short (32 Byte)

and long (512 Byte) input data, separated into cryptographic
operations. We use a randomly chosen 128 Bit AES key
and a random initialization vector for the CBC mode. The
HMAC SHA-256 is initialized with a random 256 Bit key.
As occasionally recommended, we also conducted experi-
ments with 512 Bit keys, but without further insights.
Short input data. Hardware accelerated operations scale
similar on nRF52840 and EFM32 for short inputs (Fig. 2(a))
and require less than 70 µs for AES ECB/CBC during ini-
tialization, encryption, and decryption as well as SHA-256
hashing. HMAC SHA-256 is more complex, for repeated in-

ternal hash computations, and takes at most 250 µs on both
platforms. Hash updates are small for all configurations due
to the short input sequence. The update function collects
64 Byte of data (SHA-256 internal state) before starting a
block operation, which is first triggered by final in this case.
The MKW22D operates at minimal overhead for all func-
tions. AES CBC encryption takes longer than decryption
on that platform because of the software chaining of hard-
ware accelerated AES blocks. An additional copy of the in-
put buffer during encryption avoids overwriting it, which is
omitted during decrypt.

When implemented in hardware, ciphers gain more—
a factor 4–6—over software than hashes (factor 2–4). A
comparison of software and hardware measurements for the
EFM32 shows the particular power of that platform. It oper-
ates at minimal cost using hardware accelerated operations,
in contrast to software, for which it performs slower than
nRF52840 and MKW22D, since it operates at lowest CPU
frequency. In software, AES ECB/CBC decryption is two
times slower than encryption due to the additional key inver-
sion (see Section 4). This overhead disappears on hardware.

The ATECC608A operates two orders of magnitude
slower than the other platforms (see Figure 2(a)). The reason
for this overhead is twofold. First, the vendor library main-
tains device power levels and wakes up the device prior to
every operation. Second, control commands and data need
to traverse the I2C bus with a copy to resp. from the mi-
crocontroller. AES initialization takes proportionally longer
because the encryption and decryption key has to be sent to
the device before use. The difference between cipher and
hash based algorithms is higher on the ATECC608A in com-
parison to crypto-peripheral and software support, because
AES-128 encryption of 32 Byte involves two block opera-
tions, the transport of which adds an overhead.
Long input data. Hardware crypto performance gains over
software with longer input strings. We display results for
512 Byte input in Figure 2(b). Hardware based hash compu-
tation now operates 5–10 times faster than software and ci-
phers speed up by a factor of 20 to 30. The processing time
of crypto-peripherals still operates on a similar scale com-
pared to short inputs, on nR52840 and EFM32. Surprisingly,
accelerated operations on nRF52840 outperform EFM32 for
long inputs—in contrast to short inputs.

The EFM32 requires a manual iteration over blocks,
which involves a copy of intermediate data to a temporary
buffer. The nRF52840 vendor library hides this iteration un-
der its API and the internal operations are closed source. We
expect advantages for nRF52840 here. Hardware acceler-
ated AES on the MKW22D increases by one order of mag-
nitude in comparison to short inputs, for the hybrid software-
hardware chaining mode. The performance overhead for
hashes is less dominant. Processing times for ciphers in soft-
ware increase by one order of magnitude due to the com-
plexity of block chaining and repeated key schedules. Hash
computations are more comparable in software. The effort
of update becomes visible since long input buffers update
the internal state before calculating a final digest.

Most notable is a severe performance overhead on the
ATECC608A, which operates three orders of magnitude
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Figure 2. Processing time of different crypto-algorithms on different platforms for short (32 Byte) and long (512 Byte)
input data, separated into cryptographic operations. Crypto-operations are either accelerated in hardware on off-the-
shelf microcontrollers (nRF52840, EFM32, MKW22D) or on an external cryptographic chip (ATECC608A connected
via nRF52840), or purely implemented in software.
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Figure 3. Energy consumption of hardware accelerated cryptographic operations on different platforms. Percentages
show relative overhead compared to crypto-implementations in software running on the same devices.

slower than peripheral accelerators, and two orders slower
than software. AES suffers from the length of output data,
which equals the input length. In contrast, HMAC- and
SHA-256 only return a 32 Byte digest which relieves the bus
and device control overhead.
5.2 Energy Consumption

Figure 3 depicts the absolute energy consumed by basic
crypto-operations on hardware (colors) and displays the rel-
ative energy compared to software (percentages). AES en-
cryption and decryption include the initialization, and hash
based operations include init-update-final. These results
roughly correlate with the processing time.
Short input data. The peripheral EFM32 and nRF52840
consume 0.25–4 µJ. EFM32 requires 4 mA and nRF52840
6 mA. The MKW22D is the most expensive peripheral and
consumes 1–20 µJ due to a high current of up to 20 mA peak.
The external ATECC608A consumes 45–130 µJ which is the
highest energy demand despite its small average current of
1.2 mA—a consequence of the long execution time. HMAC
SHA-256 is the most expensive operation on all platforms.
Long input data. The energy consumption of EFM32 and
nRF52840 increase marginally over short inputs. nRF52840
now outperforms EFM32 despite the higher current of
≈ 1 mA. The MKW22D increases the consumption by
roughly 10x, which is the overhead of software assisted
acceleration. The most expensive device is still the
ATECC608A whose consumption also increases by roughly
10x due to additional device management and bus utilization.
AES based operations are the most expensive operations due
to the high amount of encrypted data transmitted.
Software versus hardware. The performance gain from
hardware acceleration increases with longer input data. The
EFM32 and nRF52840 reduce the consumption on long
input data down to 1 % of the software variants. The
MKW22D equally profits for short and long input data. En-
ergy demands of the ATECC608A extension are much higher
than for software—an increase by factors from 13 to 25 with
only a slight gain in efficiency for longer input data.

5.3 Memory Requirements
Table 4 shows the memory consumption for basic crypto-

operations on our reference hardware and compares the re-
sults to an equivalent software implementation.

Context. On nRF52840, the overhead of context struc-
tures ranges from 76 to 168 Byte, which are introduced by
a buffer to represent hardware state for internal use by the
vendor driver. AES CBC introduces less overhead since ci-
pher chaining requires additional memory in software which
is absent in hardware. In contrast, the EFM32 and MKW22D
platforms require the same context sizes as our reference
software as they do not mirror the hardware state.

Stack. The stack sizes allocated with the crypto-hardware
are similar to the base crypto-software. Most notably for
HMAC SHA-256, several accelerators can reduce stack size,
e.g., by not requiring a second SHA-256 context.

RAM and ROM. For ciphers, ROM overheads mostly de-
crease for the EFM32 and MKW22D due to the absence of
static lookup tables in software (T-tables, see Section 4).
RAM sizes remain moderate on these platforms with in-
creases originating from initialized variables of driver li-
braries.

In contrast, on nRF52840 ROM and RAM overheads are
dominant. Its crypto-library maintains an internal hardware
abstraction layer, basic synchronization primitives, and in-
terrupt routines. This software representation adds 6.4 kByte
to all operations and cannot be disabled, even if features are
not required for basic operations.

External device drivers. The external ATCC608A device
interacts only via I2C communication and operates differ-
ently via its drivers. For example, encryption keys have to be
written to a key slot and indexed for use, instead of passing a
pointer to an allocated key structure. RAM and ROM usage
are fairly independent of the selected crypto-operation and
merely reflects the abstracted message transfer and invoca-
tion of the different hardware functions.
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Table 4. Memory consumption of different crypto-algorithms on different platforms. Crypto-operations are hardware
accelerated. The overhead shows more (↑) or less (↓) hardware resources required in software (RIOT Core).

AES ECB AES CBC SHA-256 HMAC SHA-256

Platform Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

Ctx
[B]

Stack
[B]

RAM
[B]

ROM
[B]

nRF52840 96 600 6407 7107 96 632 6455 7263 240 744 6391 5691 376 880 6455 6699
Overhead ↑76 ↑36 ↑6348 ↑2105 ↑76 ↑20 ↑6348 ↑2117 ↑136 ↑136 ↑6348 ↑4477 ↑168 ↓16 ↑6284 ↑5213

EFM32 20 524 84 4208 20 556 132 4288 104 600 64 4220 208 704 160 4492
Overhead 0 ↓40 ↑16 ↓804 0 ↓56 ↑16 ↓878 0 ↓8 ↑16 ↑2990 0 ↓192 ↓16 ↑2990

MKW22D 20 540 196 2838 20 556 244 2976 104 628 372 1692 208 924 468 1964
Overhead 0 ↓24 ↑136 ↓2152 0 ↓56 ↑136 ↓2184 0 ↑20 ↑328 ↑480 0 ↑28 ↑296 ↑464

ATECC608A 56 676 138 4175 56 740 154 4361 136 780 90 4089 136 748 154 4249
Overhead ↑36 ↑112 ↑79 ↓827 ↑36 ↑128 ↑47 ↓785 ↑32 ↑172 ↑47 ↑2875 ↓72 ↓148 ↓17 ↑2763

6 ECC Hardware Acceleration
We present analyses of elliptic curve cryptography run-

ning on hardware and software implementations. Hard-
ware performance measurements consider peripheral crypto-
acceleration of the nRF52840 and the external crypto-
chip ATECC608A. Software measurements include Relic, a
feature-rich library, and uECC, a minimal highly optimized
library, on the same device. Relic operates in default config-
uration, which uses a precomputation table for scalar mul-
tiplication to improve runtime performance. uECC is de-
ployed with optimization level two, which is the default to
achieve a balanced speed-size tradeoff. We operate on the
NIST P-256 elliptic curve with 256 Bit sized keys that is
supported by all hardware and software platforms and eval-
uate keypair generation, signature generation and signature
verification (ECDSA), as well as generation of a shared se-
cret, based on preceding key exchange between two parties
(ECDH). Signatures are computed on a 32 Byte message di-
gest and secrets are 32 Byte (256 Bit) in size. Keypair gener-
ation and signing rely on random numbers and hardware ac-
celerators use a build-in TRNG. Our software measurements
use a seeded SHA-256 based CSPRNG. We also configured
both libraries to use a hardware generator, but the advantage
remains negligible. As the results do not contribute to addi-
tional insights, we excluded these experiments.

6.1 Processing Time
Figure 4 presents the average and the min/max processing

time of different elliptic curve operations. Results now scale
from tens to hundreds of milliseconds.
Hardware crypto support. The nRF52840 crypto-
peripheral performs best, analogously to the results of Sec-
tion 5. All operations require ≈ 20 ms, which is one order of
magnitude below the software. The ATECC608A operates
2 to 4 times slower than the nRF52840 peripheral. Verifica-
tion as well as secret generation still outperform software by
a factor of 2–3. In contrast to basic crypto-operations (cf.,
Section 5), the external device reveals distinct performance
benefits because reduced device access contributes to lower
control overhead.
Software versus hardware. Relic creates a precomputa-
tion table during initialization. This step, which takes up
to 140 ms, is not required on hardware, and it is absent in
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Figure 4. Processing time of different elliptic curve al-
gorithms. Crypto-operations are either accelerated in
hardware on the microcontroller (nRF52840), on an ex-
ternal chip (ATECC608A), or in software (Relic, uECC).

uECC because lookup tables are statically compiled. Key
generation and signing benefit from the precomputation ta-
ble when applying the COMBS method [26] optimization for
multiplying a prime elliptic curve point by an integer. This
reduces processing times to less than 100 ms and leads to
performance results that are on par with hardware acceler-
ated operation on ATECC608A. Verification, however, ex-
hibits a higher processing demand of 260 ms. This variable
base scalar multiplication is complex because Relic uses the
window-non-adjacent form method [33]. The same applies
to the shared secret generation. The ATECC608A, in con-
trast, performs inversely, which shows that a dedicated mul-
tiplication circuit is effective.

Compared to Relic, uECC operates at the same scale
but benefits from selected algorithmic choices without us-
ing a precomputation table. Secret creation in uECC is
50 ms faster than in Relic because the co-Z Montgomery
Ladder [29] outperforms the window-non-adjacent form for
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Figure 5. Energy consumption of different elliptic curve
algorithms on the nRF52840 platform. Percentages show
relative overhead compared to crypto-implementations
in software running on the same device.

scalar multiplication over the elliptic curve [23]. Verifica-
tion is equally fast in uECC taking advantage of the Strauss-
Shamir method [39] for double scalar multiplication. Signa-
ture creation is 50 % slower, though. Considering the sum of
signing and verification uECC and Relic are on par.
6.2 Energy Consumption

Figure 5 surveys the absolute energy consumption of
hardware accelerated operations on elliptic curves (colors)
and compares the relative excess over software (percent-
ages). The ATECC608A consumes 700–1200 µJ and the pe-
ripheral nRF52840 requires less than 400 µJ for every oper-
ation. The most expensive operation on nRF52840 is signa-
ture verification (10 µJ more than signing), which is in con-
trast to the ATECC608A, which requires more energy for
signature creation but is most frugal when doing verification.
These results roughly correlate with the processing time.

The performance gain of the ATECC608A over Relic sur-
prises most. Both implementations are on par in terms of
processing overhead but the specific hardware implementa-
tion requires only 71%-78% energy of corresponding opera-
tions implemented in pure software. Creating the precompu-
tation table in Relic consumes approx. 500 µJ and presents
pure software overhead.
6.3 Memory Requirements

Table 5 shows the memory consumption for different
ECC schemes implemented in hardware and in comparison
to the two software libraries.
Peripheral crypto support. To store private and public
keys the nRF52840 implements one data structure for each
key, which require 816 and 884 Byte respectively. Consid-
ering private (32 Byte) and public (64 Byte) key sizes of the
P-256 curve, this is a significant overhead and illustrates a
design decision that favors flexibility at the expense of mem-
ory resources. Each data structure mirrors hardware state
as well as the elliptic curve domain parameters (i.e., ellip-
tic curve modulus, equation parameters, and co-factors of a
key). The latter contributes most to the overhead. Storing
the domain parameters for each key (pairs) separately, how-
ever, allows not only different elliptic curve configurations
in parallel but also to change parameters at runtime.

Table 5. Memory consumption of different elliptic curve
algorithms on different platforms. Crypto-operations are
hardware accelerated. The overhead shows more (↑) or
less (↓) resources required in comparison to software.

Keys ECDSA ECDH

Platform Priv.
[B]

Pub.
[B]

Stack
[B]

RAM
[kB]

ROM
[kB]

Stack
[B]

RAM
[kB]

ROM
[kB]

nRF52840 816 884 5472 8.08 21.20 3880 8.10 15.06
Ovrh. uECC ↑784 ↑820 ↑4352 ↑7.70 ↑14.28 ↑3064 ↑7.72 ↑9.73
Ovrh. Relic ↑540 ↑784 ↓480 ↑2.53 ↓2.48 ↓1136 ↑2.55 ↓6.22

ATECC608A – 64 998 0.12 4.85 676 0.12 3.52
Ovrh. uECC ↓32 0 ↓122 ↓0.26 ↓2.06 ↓140 ↓0.26 ↓1.81
Ovrh. Relic ↓276 ↓36 ↓4954 ↓5.43 ↓18.82 ↓4340 ↓5.43 ↓17.75

In contrast to basic crypto-operations (cf., Section 5.3),
the stack of the nRF52840 operates ECCs at a scale of kilo-
bytes because the crypto-driver library requires temporary
buffers. A user context to sign and verify introduces addi-
tional overhead in ECDSA. RAM (8 kByte) and ROM (14–
20 kByte) requirements of ECDSA/ECDH are large for off-
the-shelf microcontrollers but relatively low (3 %) with re-
spect to the overall memory available on the nRF52840.
Software versus peripheral crypto support. The
nRF52840 crypto-hardware introduces the key struct and
with it a significant overhead (520–820 Byte per key pair)
compared to uECC and Relic. uECC requires only 64 Byte
resp. 32 Byte for public and private keys. In Relic, the pub-
lic key is represented as an elliptic curve point of 100 Byte,
and the private key is contained in a multi-precision integer
structure, which allocates 276 Byte per instance.

The nRF52840 requires more RAM, ROM, and stack than
uECC. This is not surprising since uECC is tailored to a low
memory footprint [38]. uECC is able to store key material
and CSPRNG data in 380 Byte of RAM but provides only a
limited set of features. Lower performance penalties are visi-
ble when comparing the nRF52840 with Relic. Similar to the
nRF52840 crypto support, Relic is feature-rich and flexible.
To implement this, Relic maintains a global context in the
library, which leads to a similar performance overhead com-
pared to the storage of domain parameters at the nRF52840.
The nRF52840 still needs to run specific device drivers to
control crypto-acceleration.
External crypto-chip support. The ATECC608A operates
most frugal compared to the hardware crypto-peripheral and
both software implementations. The low memory require-
ments enable its use even with tightly constrained microcon-
trollers. A core design advantage of this device is a dedi-
cated, secure memory slot to store the private key. Only the
public key data structure allocates a minimum of 64 Byte,
while driver support impacts stack usage, RAM, and ROM
only slightly. On the downside, ATECC608A limits crypto-
operations to the P-256 curve.

7 The Impact of Driver Implementations
7.1 Vendor Driver and Concurrent Access

The EFM32 (V. PG12) provides two crpyto-peripherals
that can be operated independently. This concurrent feature
is managed to organize the peripheral access with a driver
API that must be asynchronous in a single-core system. The
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Figure 6. Qualitative comparison of thread and crypto-
peripheral activity with (bottom) and without (top) CPU
offloading using DMA.

vendor implementation, however, blocks the CPU during
crypto-operation. Figure 6 (top) visualizes the progress of
our test application using the vendor driver. We start two
threads of the same priority, each of which encrypts data pe-
riodically. Thread 0 (T0) triggers encryption on peripheral
CRYPTO0. The CPU is acquired by T0 until completion of
the hardware. Thereafter, T1 is scheduled and triggers en-
cryption, operating CRYPTO 0 again since is not busy any-
more. CRYPTO 1 is never used, since the vendor driver hin-
ders parallelism.

We implement an asynchronous driver that exploits DMA
to offload the CPU. Each crypto-device uses two DMA chan-
nels, one for copying input data to peripheral registers, and
the other to return encrypted data. Figure 6 (bottom) visu-
alizes the progress of our test application with an optimized
driver. T0 triggers encryption on CRYPTO 0 and relieves the
CPU while the peripheral operates. When T1 is scheduled, it
triggers encryption on CRYPTO 1 and relieves CPU access.
Note that both peripherals operate in parallel now, while the
CPU stays idle. During that time, the OS can schedule other
tasks, or switch to an energy-saving state. After completion
of the peripheral tasks, each thread is notified.

Table 6 presents results of a test program that encrypts
data concurrently, using AES ECB with and without opti-
mization. Comparing the results for 32 Byte input data, our
driver introduces an overhead of 20 ms for the DMA syn-
chronization. For 512 Byte input data, the advantage gets
visible. The vendor driver increases the progressing time by
a factor of five, while our DMA fix remains unaffected and
outperforms the vendor driver by 400 %.

7.2 Power Management and State Handling
Crypto-peripherals and external devices consume energy,

why they should be disabled when not in use. Power-cycling
a peripheral (e.g., nRF52840) is fast, whereas external de-
vices such as the ATECC608A have a longer, costly startup
time. The ATECC608A vendor library turns off the device
after every command, which is not desired on successive re-
quests.

We implement a manual switch in the power manage-

Table 6. Processing time for 2000 AES-128 encryptions
from two threads (1000 encryptions each) on the EFM32
with different diver implementations.

32 Byte input 512 Byte input

Implementation Time [ms] Time [ms]

DMA off, blocking 37.10 205.20
DMA on, non-blocking 56.60 56.90

Table 7. Performance of SHA-256 on the ATECC608A
Platform with different driver properties.

I2C@100 kbps I2C@400 kbps

Impl. Ctx
[B]

Rate
[kB/s]

Energy
[µJ]

Rate
[kB/s]

Energy
[µJ]

Auto on/off 136 1.73 85 3.01 48
Copy state 235 0.56 243 0.99 129

Man. on/off 136 2.70 59 6.46 30
Copy state 235 0.88 171 2.17 75

ment to prevent redundant power cycles. The ATECC608A
requires to sleep in predefined intervals for clearing regis-
ter and RAM values intermittently. This is enforced by a
hardware watchdog timer, which can be configured to 10 s at
most. Wakeup is triggered by a 100 µs low pulse on the I2C
SDA line which can be generated by sending a 0-Byte when
the bus is operated at 100 kbps. The ATECC608A, however,
is capable of 400 kbps bus speed. To exploit the maximum
performance, the OS needs reconfiguration capabilities for
the I/Os to toggle the SDA pin independently of the I2C op-
eration. We implemented this feature on the microcontroller
that drives the ATECC608A. This implementation was used
already in the previous sections.

The ATECC608A operates on a single hardware state (see
Section 3.1) and requires an atomic init-update-final during
hashing, though, certain use-cases operate on multiple hash
states to be updated independently, before a final message
digest is calculated. We implement an alternative SHA-256
function that replays the hardware state for every operation.

Table 7 shows evaluations for repeated SHA-256 opera-
tions on the ATECC608A. We measure the impact of man-
ual power management, the I2C bus speed, and the over-
head of preserving hardware state. Our evaluation presents
context sizes, data rates for periodic hashing, and the en-
ergy consumption for a single hash. Manually powering
the ATECC608A almost doubles the rate due to the reduced
wakeup time. Conversely, the energy consumption reduces
by a factor of 1.5. Increasing the I2C from 100 to 400 kbps
increases the rate by a factor of two and decreases the energy
consumption respectively. Copying the internal state, how-
ever, costs performance. The state needs to be stored in the
context struct, which adds 99 Byte. The overhead of this
mechanism reduces the rate by a factor of three and affects
the energy consumption similarly. All together energy and
speed can vary by on order of magnitude.
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8 Related Work
Crypto support in operating systems. mbed OS [5] is
the ARM operating system for the Cortex-M family. It in-
cludes the SSL library mbed TLS [6], which implements
symmetric and asymmetric cryptographic algorithms in soft-
ware. mbed OS allows replacement of cryptographic func-
tions by crypto-hardware implementations. An analysis of
the performance advantages is missing, though. zephyr [44]
does not include crypto-hardware, but support is planned for
future releases1. Software-based crypto support is inherited
from mbed TLS and TinyCrypt [20]. Similarly, mynewt [3]
uses mbed TLS and TinyCrypt. A rudimentary crypto API
provides encrypt/decrypt functions that leverage hardware
capabilities for basic AES. Contiki-NG [2] provides sparse
crypto support, though. With our crypto-extensions in RIOT
we aim to bring more diversity in terms of hard- and software
support to evaluate and deploy security in the IoT.
Performance of crypto-software. On very constrained de-
vices, Gura et al. [19] compare RSA with ECC, Zhou et
al. [46] present optimized implementations of SM2 and the
NIST P-256 elliptic curve. These evaluations run bare metal
based on software dedicated to specific hardware platforms
which is in contrast to our study. We focus on a multi-
purpose operating system and common crypto-libraries, and
find that results are on par with bare metal implementa-
tions albeit our system favors more flexibility with respect to
supported microcontroller platforms and peripherals. In the
context of an operating system, processing overhead, mem-
ory, and energy were measured for symmetric cryptography
(i.e., AES) and secure hashing (i.e., SHA and MD5) by Pass-
ing et al. [34] on NutOS and Tsao et al. [42] on Contiki [14].

Mössinger et al. [30] present runtime, memory, and en-
ergy consumption of elliptic curve cryptography in Con-
tiki. Frimpong et al. [16] present an ECDH and ECDSA [1]
implementations in Contiki-NG, using TinyCrypt. Kim et
al. [24] ported the mbed TLS crypto-library to RIOT and
FreeRTOS, and evaluate the processing time of ECDSA sig-
nature and verification on two platforms. Optimizations
of elliptic curve cryptography are presented in [9, 13, 27].
In a comparative study of different elliptic curve libraries,
Silde [38] shows that distinct optimizations for elliptic
curves are vulnerable to side-channel attacks. This is one
reason why we focus on common ECC.
Performance of crypto-hardware. Munoz et al. [31]
present time and energy measurements for AES, running
an SDK for software and hardware support on two plat-
forms. Pearson et al. [35] compare the performance of pe-
ripheral and external crypto support for different symmet-
ric and asymmetric operations, deploying Espressif and Ar-
duino code, because a multi-platform OS was missing. Lach-
ner et al. [25] assess time measurements for different ciphers
and one asymmetric signature algorithm, operating three
devices with Arduino firmware. wolfCrypt [43] includes
crypto-hardware drivers and analyzed throughput of selected
platforms. The library does not abstract hardware and thus
cannot benefit from crypto-hardware on the OS level.

Gerez et al. [17] compare the power consumption of a

1https://docs.zephyrproject.org/latest/security/security-overview.html

TLS session using RSA and ECDHE between a Rapberry Pi
and an IoT device with crypto-hardware. Mades et al. [28]
compare the battery runtime of a TLS stack with and with-
out hardware acceleration. Nofal et al. [32] analyse the
TLS handshake and record layer and present the energy con-
sumption of three elliptic curves and two RSA configura-
tions on two hardware platforms, with and without crypto-
acceleration. Schläpfer et al. [37] provide a brief perfor-
mance comparison between new secure elements and DTLS,
using mbed TLS as a software platform. Durand et al. [15]
quantify the energy demands of OSCORE. Zhou et al. [45]
argue for a reprogrammable FPGA approach to implement
optimized cryptographic algorithms. Conti et al. [11] present
a novel IoT platform architecture with AES acceleration and
evaluate the benefit of hardware over software cryto. Their
findings are on par with our study, however, the specific
design contrasts our approach that focuses on off-the-shelf
hardware and software implementations.

9 Conclusion and Outlook
In this paper, to the best of our knowledge, we presented

the first comprehensive comparison of multiple symmetric
and asymmetric cryptographic algorithms, implemented in
hard- and software and consistently evaluated on multiple
constrained common IoT devices. For a representative set of
crypto-peripherals as well as an external security device, we
showed detailed system benchmarks to reveal design trade-
offs when implementing secure crypto-hardware support on
a multi-purpose operating system for constrained devices.
Our results include: (i) Crypto-peripherals outperform soft-
ware in runtime and energy. The benefit increases with
longer input lengths. This contributes to node lifetime. On
the downside, drivers introduce memory overhead. (ii) Con-
text sizes and stack utilization of crypto-hardware operate at
a similar scale as crypto-software. Device complexity un-
surprisingly increases the overhead. (iii) External crypto-
devices are slow on symmetric crypto-operations, but their
performance advances are notably on asymmetric crypto.
A small memory footprint enables cryptographic operations
on very constrained devices. Furthermore, a collection of
hardware based side-channel countermeasures provides ad-
ditional resistance against attacks. On the downside, the
I2C communication introduces an attack surface. (iv) Spe-
cial care is required with crypto-drivers. We found several
vendor implementations with large optimization potentials.
Furthermore, different levels of hardware crypto support re-
quire a configurable environment with different layers of ab-
straction and software assistance. This is provided by the
OS and contributes to code reusability and portability while
exploiting hardware features. We hope that our results will
help to prevent performance pitfalls in the future.

In future work, we will extend our analysis on hard-
ware architectures that provide dedicated security subsys-
tems such as TrustZone and measure their performance in
a widened experimental setup. Part of this will be a focus
on the abstraction of secure memory technologies and a per-
formance evaluation using the novel security protocol stan-
dards ACE-OAuth and LAKE, which will make heavy use
of hardware-accelerated crypto-operations.
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