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Abstract

The Internet of Things (IoT) comprises a relevant class of applications that
require Quality of Service (QoS) assurances. Information Centric Networking
(ICN) has shown promising characteristics in constrained wireless networks, but
differentiated QoS has not yet fully emerged. In this paper, we design and an-
alyze a QoS scheme that manages the NDN resources forwarding and queuing
priorities, as well as the utilization of caches and of forwarding state space. In
constrained wireless networks, these resources are scarce with a potentially high
impact due to lossy radio transmission. We explore the two basic service quali-
ties (i) prompt and (ii) reliable traffic forwarding. We treat QoS resources not
only in isolation, but correlate their use on local nodes and between network
members. Network-wide coordination is based on simple QoS code points that
can be distributed via a routing protocol. Fairness measures that prevent re-
source starvation are part of this management scheme. Our findings indicate
that our coordinated QoS management in ICN does not only effectively priori-
tize the privileged data chunks, but also improves regular data communication.
We can show that appropriate QoS coordination can enhance the overall net-
work performance by more than the sum of its parts and that it exceeds the
impact QoS can have in the IP world.
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1. Introduction

The advent of the Internet of Things (IoT) introduced the vision of om-
nipresent and always connected sensors and actuators that generate business
models from new products, innovative processes, and data—a total of 1.6 Zettabytes
is soon expected [1] in this rapidly growing business segment. Various use cases
are emerging, some of which raise specific requirements for high reliability or
low latency. Prominent examples are industrial control systems, autonomous
driving, emergency alerts, and disaster scenarios. Common link layers that out-
reach to the embedded edge such as LowPANs, LoRa [2], or NB-IoT [3] are often
of low power lossy nature and do not provide an intrinsic support of the desired
service qualities for data transmission. It is thus left to the network layer to
optimize the overall performance of the communication system.

ICN has been a promising candidate for networking the IoT edge for a
while [4, 5, 6, 7, 8, 9]. Recent experimental studies [10, 11] confirmed that ICN
can sustain high reliability at moderate latency penalty even on lossy wireless
links, and showed how it could be integrated into an emerging 5G edge archi-
tecture. Nevertheless, current analyses and solutions are built purely on equal
resource sharing. QoS resource management for ICN is still in its early stage
and studies of ICN properties under prioritization and active QoS management
are missing.

Quality of Service (QoS) in IP networks has been around for two decades,
but so far has experienced remarkably little deployment. Its hesitant adoption
is commonly understood to have two reasons: limited scalability (IntServ [12,
13]) and plain resource trading (DiffServ [14, 15])—the latter is often referred
to as managed unfairness. While QoS in the IP world is mainly restricted
to managing forwarding resources (link capacities and buffer spaces) [16] and
the IEEE follows this approach on Layer 2 with Time Sensitive Networking
(TSN) [17, 18], Information-Centric Networking (ICN) [19, 20] offers additional
resource dimensions such as in-network caches and forwarding states that can
shape network performance significantly.

In this paper, we thoroughly explore the impacts of QoS management on
NDN [21, 22] in the resource-constrained IoT using RIOT [23]. We extend our
early work [24] on the two basic service dimensions (i) prompt and (ii) reli-
able traffic forwarding and define a simple yet efficient distributed management
scheme. We carefully implement these QoS semantics by employing not only
the NDN resources forwarding capacity, PIT state, and cache alone, but by
correlating resources internally on a node and also externally between nodes.
These correlations can be performed without additional signaling overhead. We
design and analyse fairness measures that prevent network members from star-
vation and demonstrate the feasibility of our approach in a realistic showcase of
a disaster scenario.

Our findings from extensive experiments in a large testbed confirm the effi-
cacy of our approach. We can show that—in contrast to the IP world—these
QoS measures do not sacrifice the performance of unprioritized traffic. Even
though resources shift to the prime packets, best effort flows still uphold their
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Figure 1: Manageable resources in IP vs. NDN.

performance or even improve. A thorough analysis reveals the positive effects of
resource correlation, which raises the overall network performance to a higher
level than in the state of uncoordinated resource allocation. These results clearly
strengthen ICN as a candidate for differentiated IoT network services.

The remainder of this paper is structured as follows. The problem space
of managing distributed resources is discussed in Section 2 along with related
work. Section 3 introduces the QoS building blocks and how we manage the
resources. Our implementations and evaluations of prioritized forwarding are
presented in Section 4. Section 5 is dedicated to analyzing the impact of caching
on network services. The problems of fairness and countermeasures to resource
starvation are derived in Section 6, followed by our use case study in Section 7.
We conclude with an outlook in Section 8.

2. The Problem of Distributed Resource Management in ICN

2.1. Problem Statement

Implementing service differentiation and assurance in a network raises the
challenge of managing distributed resources without sacrificing them. Common
Internet approaches follow a flow-based (e.g., IntServ) or a class-based (e.g.,
DiffServ) concept. Flow-based resource reservation requires dedicated signaling
and state, which quickly reaches scalability limits with resource exhaustion. In
the presence of ubiquitous in-network caching and request aggregation, content
endpoints are unspecified for ICN and data paths are inherently multi-source,
multi-destination, and possibly widely disjoint. This makes ICN flows difficult
to identify and to maintain.

Resource allocation according to packet classes requires ingress shaping and
filtering, since unforeseen traffic bursts quickly exhaust the per-class reserva-
tions and counteract service assurances. In several ICN flavors including NDN
and CCNx, link occupancy and forwarding demands are steered hop-by-hop
in a request-response fashion. Small requests trigger data replies of unknown
size, provenance, and timing. This complicates reliable resource predictions for
responses in NDN. Shaping and dropping Interests can prevent resource exhaus-
tion, but may leave the network underutilized. Restricting ingress only to data
may lead to bursts of unsatisfied Interests, which waste network resources.
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Figure 2: PIT decorrelation terminates data paths.

In-network caches in ICN enrich the field of manageable resources. Caches
reduce latency and forwarding load and often take the role of a (large, delay-
tolerant) retransmission buffer. With NDN/CCNx, additional resources come
into play in the form of Pending Interest Tables (PITs) that govern stateful
forwarding. The overall resource ensemble is visualized in Figure 1 and raises
concerns. Capacities in forwarding, caching, and pending Interest state may
be largely heterogeneous. A wirespeed forwarder may supply negligible cache
memory compared to its transmission capacity, for example. In the IoT the
opposite is often true in that flash memory is normally shipped in ‘infinite’
sizes when compared to the main memory (PIT) or the wireless data rate. A
beneficial resource management faces the problem of how to carefully balance
these resources and arrive at an overall optimized network performance [25].

Resource complexity, however, extends beyond a single system. The impact
of distributed resources is easily flawed if management cannot jointly coordi-
nate contributions. Neighboring caches, for instance, are less effective if filled
with identical copies. The effective overall cache capacity of the system can be
increased by using cooperative caching strategies, which are needed in particu-
lar if caches are too small to hold the requested amounts of data during their
validity periods. A more delicate problem arises from PIT state management.
If neighboring PITs diverge and no longer represent common forwarding paths
(see Figure 2) all data flows terminate and forwarding resources are wasted.
This problem of state decorrelation was first reported in [26].

2.2. QoS Qualifiers

QoS extensions for ICN have recently attracted attention and generated vari-
ous efforts within the IRTF ICN research group [27, 28, 29, 30, 31]. A proposed
flow classification mechanism [29] differentiates traffic flows based on content
name prefixes using two different methods. The first method, EC3, introduces
a new message header entry in Data packets that indicates the prefix length
of the content name characteristic for the classification process. Once a con-
sumer learns about such an equivalence class, it can also include equivalence
class indicators into subsequent Interests. The second method, ECNCT, en-
codes classification indicators directly into names at content creation using a
new type of name component. This solution does not inflate messages with
additional headers, which is advantageous for constrained IoT deployments.
Nevertheless, encoding flow classification indicators in typed name components
leads to an inflation of names in the routing system. Identical content published
with different classification values will lead to duplicate names that cannot be
aggregated in Forwarding Information Bases (FIBs). Analogously, the default
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matching functions used for the Pending Interest Table (PIT) and Content Store
(CS) will consider names that differ only in their flow classification as dissimilar,
which conflicts with Interest aggregation and cache utility.

In contrast, our approach to flow classification is simpler and leaner. We
attribute QoS service classes to name prefixes and distribute this information
to the ICN node (e.g., via a routing protocol) to be kept as persistent state. This
approach omits packet overhead, remains compliant with Interest aggregation
and caching, but cannot process content of the same name in different service
classes.

In the Internet Research Task Force (IRTF), two approaches to QoS treat-
ment are under discussion. An end-to-end QoS framework [30], in which non-
routable QoS markers are appended as suffixes to content names. In analogy
to DiffServ, these markers are then used to apply different resource allocation
mechanisms to the request and response messages. The FIB is extended to ig-
nore QoS markers, and the PIT is modified to disaggregate pending requests
that have differing QoS markers. This disaggregation may lead to PIT inflation
in particular for setups with a high diversity of QoS markers. This work has
also been presented to the IRTF [31].

Tsilopoulos et al. [32] identify three different types of traffic based on two
characteristics in ICN traffic. The authors introduce two extensions to CCN
in order to handle these traffic types, Persistent Interests and Reliable Noti-
fications. Persistent Interests are valid for Data packets which are produced
during a pre-defined period of time. Reliable Notifications inform receivers that
real-time data is available and are propagated reliably on a hop-by-hop basis.
Notifications that are not acknowledged in time are retransmitted. If a receiver
successfully receives a notification but does not receive data in a given time,
new Interests are created to renew the request.

2.3. Distributed Forwarding Resources

MIRCC [33] introduces a rate-based, multipath-aware congestion control
scheme for ICN. Each Data message in MIRCC contains a rate value which
in turn is used to calculate per-link rates. It is inspired by the Rate Control
Protocol (RCP) [34] for IP networks.

Al-Naday et al. [35] manages forwarding resources and is experimentally
evaluated for the PURSUIT architecture. This work implements a QoS dif-
ferentiation scheme, where each forwarder manages virtual links that include
packet queues with varying traffic rates and a designated traffic shaper. QoS
information is encoded into the names and determines the mapping of traffic
flows to low or high priority virtual links.

2.4. Distributed Cache Management

Caching policies that employ heuristics to inform a caching decision instead
of caching all incoming content can be broadly organized into a number of
different families, depending on what information they use to reach their caching
decision.
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The easiest way to achieve higher cache diversity without increasing the
complexity of the caching policy is to cache probabilistically. The static ver-
sion of this approach, commonly known as Prob(p), uses a static probability p
that governs how likely a given node will cache a given content chunk. It has
been shown [36, 37] that Prob(p) outperforms the default strategy of caching
everything in terms of cache diversity, and that lower values for p correlate with
higher diversity [36, 37, 38, 39, 40, 41].

Instead of using the same static caching probability for all incoming con-
tent, a caching strategy may also dynamically compute a probability for each
individual node or even for each content chunk in order to adapt the caching
behavior to the state of the network. These strategies may be based purely on
node-local information, such as CS saturation or battery levels; on properties
of the incoming content, such as its name, freshness, type, or producer; or on
information from the wider network, such as the position of the caching node
in the network topology or the CS contents of neighboring nodes. Examples in-
clude ProbCache [38], which computes the caching probability of a given content
chunk based on the total number of hops between its producer and the consumer
that requested it, and pCASTING [37], which considers the freshness of the con-
tent as well as the node’s battery level and CS saturation when calculating p.
Both strategies have been found to increase the cache hit ratio, reduce the av-
erage number of hops required to hit requested content, and reduce the number
of cache evictions [42]. Various other dynamic probabilistic caching strategies
have been proposed, with decisions based on content freshness [37, 43], content
popularity [44], or whether the content is already in a neighboring CS [45].

Not all caching strategies use the probabilistic approach. Instead, some
exploit knowledge about the network topology [46, 47, 48, 49, 50, 51], which
has the advantage of taking global knowledge about the network into account
but often comes at significant costs such as lengthy setup times, communica-
tions and memory overhead, and vulnerability to changes in the topology [51].
Another class of caching policies has nodes cooperate with their neighbors, ei-
ther explicitly by exchanging information [52] or implicitly by using pre-defined
rules [53, 54, 55].

3. QoS Building Blocks for NDN

3.1. Distributed Traffic Flow Classification

General purpose networks simultaneously host competing traffic flows that
exhibit varying resource requirements and time constraints. This also holds for
typical IoT deployments, in which flows originate from sensors and actuators,
or from remote cloud services that connect via gateways to the IoT domain. A
flow classification is necessary for differentiating packets that belong to separate
message flows, whenever the network should allocate distinct resources and treat
them in a differentiated manner.

In the IP world, traffic flows are defined by the application endpoints and
identified by address/port tuples (IPv4) or addresses plus flow label (IPv6).
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Figure 3: QoS Service Levels.

Traffic Class Priority

/MO/ACM/ICN <Reliable, Regular>
/MO/ACM/ICN/site/A/alarm <Reliable, Prompt>
/MO/ACM/ICN/site/B/temp <Regular, Prompt>

Table 1: Traffic classes and appropriate priority mappings.

Since ICN abandons the host-centric paradigm, this definition of traffic flows
no longer holds. In the presence of delocalized content and in-network caching,
the concept of application endpoints becomes meaningless.

The characterizing property of these packets are content names (or prefixes).
In the example of CCNx and NDN, content names appear in related Interest
and Data packets. This ubiquity of names and their potential to impose hier-
archies on content make them a distinguished component for identifying flows.
Accordingly, we propose a traffic flow classification mechanism for NDN that
builds on hierarchical names, prefixes, and longest common prefix match. It is
explicitly designed to not put a strain on typically resource constrained IoT de-
vices. In this regard, our scheme is computationally simple and does not require
an additional overhead in message headers.

In this work, we consider service differentiation with respect to two quality
dimensions: latency and reliability. For simplicity we only use a plain distinction
in each quality, which results in a matrix breakdown of service levels as shown
in Figure 3. More sophisticated differentiations apply analogously.

Service classes are assigned to flows according to a list of prefixes that are
marked with a traffic class and maintained by each node, e.g., as part of the For-
warding Information Base (FIB). Incoming Interest and Data messages are then
mapped onto traffic classes by applying a longest prefix match against this list of
traffic identifiers. Traffic class names may look as in Tab. 1. Given this example,
Interest and Data messages containing the name prefix /MO/ACM/ICN/site/C
would map to the closest valid traffic class. In this case, the longest matching
prefix is /MO/ACM/ICN.

This work assumes such prefix marking to be deployed at all nodes within
a network domain. The distribution and maintenance of QoS configurations
may be performed by a regular routing protocol or by more specific QoS ne-
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gotiation protocols. To illustrate the first, we recall that any NDN routing
protocol distributes name prefixes across the nodes of its domain to enable a
dynamic name-based routing. Prefix (or name) advertisements could be easily
augmented by QoS qualifiers so that QoS configurations would allow for actu-
alization within one update cycle of the routing protocol in use. Nevertheless,
a general discussion of QoS signaling is beyond the scope of this work, which
focuses on a lightweight flow-to-priority mapping for the purpose of quantifying
the benefits of QoS resource management.

It may be noted that fine-grained service differentiation within a complex
name hierarchy can result in large QoS prefix tables that may inflate the FIB.
For the constrained IoT use case, though, we argue that sensor readings and
actuator settings are machine type communications (MTC) with (short) names
configurable according to processing needs. Hence QoS overheads should easily
comply to resource constraints.

3.2. Manageable Resources

3.2.1. Forwarding onto the Link Layer

The link layer manages access to the media and provides space to buffer pack-
ets. In low-power wireless networks, media access times are highly susceptible
to media saturation and buffer spaces are small. While time slotted technolo-
gies such as the IEEE 802.15.4e TSCH mode and Bluetooth Low Energy access
media in a deterministically scheduled manner, the unslotted CSMA/CA ver-
sion of IEEE 802.15.4 or long-range radios such as LoRa are more susceptible
to packet collisions between neighboring nodes.

In the IoT, content producers that generate sensor readings may produce
egress traffic at a rate that is much higher than the average media access time.
In addition, nodes may further need to forward ingress traffic in multi-hop
scenarios. For this purpose, buffering egress traffic is necessary to cope with
traffic spikes.

Queuing and buffering take the same role in ICN as in the IP world. Class-
based forwarding queues will process packets of the prompt flow class before
packets with a regular priority while buffer space will prevent packet drops.
It should be noted, though, that rapidly forwarded packets in NDN will also
quickly satisfy PIT entries and thereby free forwarding resources for unpriori-
tized traffic on the same path.

3.2.2. Pending Interest Table

The Pending Interest Table (PIT) enables the stateful forwarding plane of
CCNx and NDN and thereby governs the flows in the network. The size of the
PIT resource effectively dictates the maximum number of simultaneous open
requests and the coherence of PIT entries along a path determines whether
flows can propagate without barriers. In normal NDN operation, PIT state
is allocated when an Interest message is processed, and it is removed in two
scenarios. Either a returning Data message consumes the PIT state, or a timeout
after a succession of retransmissions clears the state.
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PIT saturation is common even in overprovisioned networks, but is far more
likely to occur in IoT deployments. Limited RAM resources, slow processing
power, delayed media access, and packet loss in low-power networks with inter-
mittent connectivity can all cause the PIT to reach its maximum capacity.

The typical way of handling incoming Interest messages at a saturated PIT
is to drop them in order to avoid cancelling active but incomplete request oper-
ations. The penalty for dropping such Interests is an increase in latency due to
retransmissions, which usually happen on the scale of seconds. To avoid high
latencies for time-sensitive traffic flows, an elaborate PIT eviction strategy is
necessary, which accounts for (i) unhindered forwarding of prioritized Data, and
harmonizes with (ii) the retransmission mechanisms of the regular NDN.

3.2.3. Content Store

Due to memory constraints, the Content Store (CS) is typically small, ne-
cessitating heuristics for deciding what content to cache at which node instead
of indiscriminately caching all incoming content. There is a wealth of existing
research on how to make the most efficient use of limited CS space, with a num-
ber of different strategies employing various heuristics to decide whether or not
to cache incoming content (see Section 2.4). This aspect of caching is called the
caching decision strategy.

The introduction of traffic flow priorities adds an additional dimension to
the caching decision. Regardless of which specific caching decision strategy is
employed, content marked as reliable should always be cached as it is imperative
that this content is available throughout the network. Thus, reception of reliable
content should not trigger the caching decision strategy; instead, control should
be handed directly to the cache replacement strategy (see below). The question
whether prompt content should be cached with a higher priority than content
with regular latency requirements is not as clear-cut. Caching prompt content
with higher priority would have a positive effect on future transmissions of
that content object (either by retransmission of the original request or by new
requests) and thus have a positive effect on latency, although the potential gain
in this aspect is dependent on path length. Any content that is marked as
regular in both QoS dimensions should be treated as normal; in other words,
the caching decision strategy is consulted.

After a node has decided to cache a new content object, an additional step
may have to be taken in case the CS is at capacity. This aspect of caching is the
cache replacement strategy. In most cases, CS contents will be replaced using
a simple heuristic such as Least Recently Used (LRU). However, once again
the introduction of traffic flow priorities adds an additional dimension to this
decision.

In general, incoming content should not replace content of a higher priority.
Therefore, content with regular latency requirements should not replace prompt
content and content with regular reliability should not replace reliable content.
When it comes to the correlation between latency and reliability, the primary
goal of the CS should be to ensure content availability, which places a stronger
emphasis on the reliability aspect. Thus, reliable content with regular latency
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Isolated Decisions Resource Correlations Joint Prioritization

Forwarding Queue
Expedite prompt traffic

PIT–CS Correlation
If Prompt Data has no PI
→ cached with priority

PIT Coherence
Aligned node decisions
regular < reliable < prompt

Pending Int. Table
Evict regular for prompt

Fwd–CS Correlation
If Prompt Data drops
→ cached with priority

CS Efficiency
Aligned node decisions
regular < prompt < reliable

Content Store
Evict regular for reliable

Table 2: Classification of QoS mechanisms and decisions.

should be able to replace prompt content if no other content is eligible to be
replaced. If all content is of the same priority class, regular replacement rules
(e.g., LRU) should apply.

In probabilistic caching, as introduced in Section 2.4, each node caches in-
coming content according to a certain probability p. Regardless of how exactly
p is determined (whether statically or by one of the dynamic methods discussed
in Section 2.4), the probabilistic approach may be refined by differentiating be-
tween two separate probabilities preg for regular content and prel for reliable
content, with prel > preg. This has the effect that a CS at each node will
have different contents, thus contributing to CS diversity across the network by
making a larger range of content available as cached copies, while giving con-
sideration to service classes ensures that higher-priority content is still treated
preferentially.

3.3. Distributed QoS Management

We are now ready to present our approaches to distributed resource man-
agement for supporting QoS in ICN. The corresponding mechanisms fall into
three classes, depending on the level of interdependence between resources on
the same device or between devices. A summarizing table is further given in
Tab. 2.

3.3.1. Locally Isolated Decisions

The straightforward allocation of independent resources to packet forwarding
follows three simple rules:

Prioritized forwarding applies to flows marked as prompt.

Cache (re-)placement decisions obey the priority order reliable (highest) to
regular (lowest). In the presence of probabilistic caching strategies, the
weights are set accordingly.

PIT management operates in favor of rapid packet forwarding, so PIs enter
the PIT in the order prompt (highest) to regular (lowest). Newly arriving
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Interests that meet a PIT saturated with entries of equal or higher priority
will be dropped. Otherwise, a premature PIT eviction would lead to
incoherent PIT states along common forwarding paths (see Sec. 2.1).

3.3.2. Local Resource Correlations

These are decisions that entail interaction between mechanisms on the same
device (intra-device correlations). This includes the correlation between the
caching decision and cache replacement strategies, where e.g. the caching deci-
sion may pre-empt the cache replacement decision in the case of reliable flows,
while the cache replacement decision may drop content even in the case of a
positive caching decision if no content of the same or lower service class can be
replaced. In detail we take the following steps:

w/ PIT entry If arriving Data meets a valid PIT entry, Data is forwarded
according to priorities and cached with priority, if marked as reliable. In
the case of exhausted prioritized forwarding queue, prompt traffic will be
cached with the highest priority.

w/o PIT entry If arriving Data meets no valid PIT entry, cache placement
will still be initiated for prompt and reliable data in subsequent order. For
probabilistic caching, weights are adjusted accordingly.

In balanced, unconstrained NDN networks, returning regular Data meets
open PIT states. For saturated PITs, however, PIT entries may time out quickly,
or resource management may enforce eviction of PIT entries in favor of other
requests. Allowing Data without corresponding PIT entries to be cached may
introduce the threat of cache poisoning attacks. However, a simple rate limiting
on incoming Data packets and a reduced cache time for these CS entries may
reduce the attack surface in our constrained environment. Further analysis of
related effects is left to future work.

3.3.3. Joint Resource Prioritization

Such mechanisms affect resources across multiple or all devices in the net-
work (inter-device correlations). These include maintaining PIT coherence by
ensuring that all nodes apply uniform QoS mechanisms when replacing con-
tent of different service classes, as well as achieving CS diversity by introducing
probabilistic caching based on priority classes. In our system, a joint resource
prioritization is achieved as follows.

PIT coherence is increased by applying the same PIT eviction strategy at all
nodes, i.e., evict regular before reliable before prompt.

Cache efficiency increases with probabilistic caching using aligned configura-
tions of equal cache weights at all nodes. It is noteworthy that probabilistic
caching reduces the risk of starvation for low priority content due to higher
cache diversity, even if high priority flows dominate the network.

A summary of the different QoS decisions while processing Interest and Data
messages are visualized in a flow description in Figure 4.
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Figure 4: Flow description for Interest and Data messages in a QoS enabled NDN forwarder.

4. Evaluating Competing Traffic

4.1. Implementation and Experiment Setup

Testbed. We conduct our experiments on the FIT IoT-Lab testbed using typical
class 2 [56] IoT devices that feature an ARM Cortex-M3 MCU with 64 kB RAM
and 512 kB ROM. Each device further contains an Atmel AT86RF231 [57]
2.4 GHz transceiver to operate on the IEEE 802.15.4 radio.

QoS aware nodes. All devices run on RIOT OS [58] version 2019.04 with the
integrated NDN network stack CCN-lite [59], which we extended with our QoS
management scheme. In addition to the PIT and CS management strategies, a
very lightweight prioritized forwarding was implemented using a single packet
double-buffer that allows for pairwise packet re-ordering. We also note that
network stack performance usually exceeds link speed. While IEEE 802.15.4
provides a theoretical maximum of 250 kbit/s, I/O and data processing in the
network stack is at least one order of magnitude faster [60].

System parameters. Following the large-scale deployment in [10], we configure
a maximum number of four retransmissions and a retransmission interval of
two seconds for CCN-lite. To analyze our approach under different levels of
network saturation, we configure the maximum capacities of PIT and CS to
range between 5 and 30 elements. Notably, the estimated RAM usage for 30
PIT entries and 30 CS elements with name lengths of ≈ 32 bytes is already
approximately 11 KiB, which is around 17% of the total available RAM for our
hardware platform.
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Figure 5: Nodal success rates for Scenario 1 using regular traffic (left) and reliable actuator
traffic (right).

Caching parameters. We consider the caching procedure to consist of two fun-
damental steps: (i) caching decision, and (ii) cache replacement. In our exper-
iments, we use two different caching decision strategies and one cache replace-
ment strategy.

The first decision strategy is to cache always incoming Data packets, with
the restriction for regular traffic that Data packets without a corresponding PIT
entry are dropped and not cached. For reliable traffic, we adjust this strategy,
such that Data packets without PIT entries are still considered for caching.
The second decision strategy is to cache probabilistically. Every node caches
incoming Data packets with a probability preg of 30% for regular traffic, and
with a probability prel of 70% for reliable traffic. For a saturated CS, our cache
replacement strategy evicts content store elements using the least recently used
(LRU) policy.

4.2. Topology Setup

The testbed provides access to multiple sites with varying numbers of M3
IoT devices and network characteristics. We deploy our applications on the
Grenoble site, as this supports significantly complex multi-hop paths. We choose
31 M3 devices to host a rich network topology with varying fan-outs, chains,
and branch sizes. As such, this single topology represents well a non-trivial
IoT edge network and therefore facilitates the reproducibility of our results. In
this topology, one device acts as a gateway node and the other 30 devices act
as sensors and actuators. Since convergecast is the most predominant traffic
pattern in common IoT scenarios, we arrange our devices to form a Destination
Oriented Directed Acyclic Graph (DODAG) that is rooted at the gateway node.
Approximately 60% of the nodes are reachable from the root within 4–5 hops,
while the remaining devices have path lengths up to 12 hops. The topology is
visualized in Figure 5. Extended left and right wings in the routing topology
result from long hallways in the Grenoble site.

13



4.3. Experiment Scenario 1: Mixed Sensors and Actuators

We want to quantify the efficiency of QoS enhanced forwarding in challenged
multi-hop deployments that display typical traffic patterns. With this in view,
we analyze our approach first in a scenario with mixed traffic of unprioritized
sensor readings and prioritized actor commands.

The gateway node requests temperature readings from the 30 sensor nodes
every 10 s with ± 2 s jitter interval. Thus, on average, the request rate at
the gateway approximates to 3 packets/s and including the reception rate of
responses, the gateway handles 6 packets/s. The naming scheme for each request
consists of a prefix, a device-specific node id, and an increasing sequence number.
We refer to this traffic equally as sensor readings or sensor traffic.

In addition, all 30 devices further act as actuators that periodically request
a device-specific state from the gateway node every 5 s with ± 1 s jitter. This
yields a request reception rate of 6 packets/s on the root node. The naming
scheme for these requests similarly consists of a prefix, a device-specific node id,
and an increasing sequence number. We name this traffic actuator traffic.

In this scenario, sensor and actuator data are device-specific and thus only
scattered destinations benefit from on-path caching during the narrow window
of Interest retransmissions.

4.4. Results

We measure and record the success rates, goodputs and time to completion
for each node in the topology, while we analyze the network utilization for
gateway and actuator traffic separately with and without the proposed QoS
features enabled.

Success rates. In our first experiment we focus on the nodal success rates using
the first scenario with a PIT and CS limitation of 5 entries. The gateway is
configured with a PIT limitation of 50. Figure 5 shows the resulting success
rates for (i) the regular operation of NDN on the left hand side, and (ii) a setup
with prioritized actuator traffic using the prompt and reliable QoS service levels
on the right hand side. The success rates per node are color coded and range
from 0% (purple) to 100% (yellow).

Figure 5 clearly depicts huge differences in success rates for both configu-
rations. In the normal NDN operation, nodes close to the gateway, as well as
the left wing of the topology, achieve 100% success rates. Strikingly, the right
wing exhibits major network stress, with nearly all actuators having a success
rate below 10% due to PIT overflows. Conversely, with QoS service levels en-
abled, the right wing shows much enhanced network performance, which results
in overall higher success. With this configuration, 70–100% of the packets ar-
rive at actuators close to the gateway, and 40–70% at more distant nodes. Leaf
nodes farther away show a greater improvement in success rates than forwarding
ancestor nodes.

This striking example nicely illustrates the positive effect of PIT coordination
obtain from QoS differentiation. While in the regular case Interests at nodes
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Figure 6: Packet transmission rate per minute for requests and responses with and without
(prioritized) cross traffic measured at the gateway.

with exhausted PIT are discarded as they randomly arrive, the QoS marking
preselects those requests that are prioritized throughout the network, leading to
fewer retransmissions and a more efficient use of the overall PIT space available
in the network. A more detailed analysis that compares with enhanced caching
effects will be discussed in Section 5 and is visualized in Figure 10.

Network utilization. In typical convergecast settings, a majority of the traffic
traverses the gateway to reach remote endpoints. Thus, a robust operation of
the gateway node is crucial to ensure adequate performance of the entire IoT
network. Due to the increasing sequence numbers used in the naming scheme
for Scenario 1, virtually no response contributes to future in-network cache hits.
To gauge the network load on the gateway, we analyze the number of outgoing
requests and incoming responses during a setup in which actuator traffic is
added to the traffic from the gateway after approximately eight minutes. We
first perform this experiment without any QoS features enabled, and then repeat
it with the adjustment that actuator traffic is prioritized using the reliable and
prompt service levels. The PIT of the gateway is configured to a maximum of
50 entries, while the remaining nodes have a PIT maximum of 5 entries. The
CS is limited to 5 entries for all nodes.

We observe in Figure 6 that the sensor traffic exhibits a steady request-
response flow of about 180 packets/min for both requests and responses. As
soon as the actuators initiate their periodic requests (at minute eight), the
network load at the gateway increases. The number of requests spikes threefold
due to network layer retransmissions, while the number of returning responses
drops to half. In contrast, the setup with prioritized actuator traffic clearly
admits a reduced number of requests at the gateway while achieving a higher
response rate.

These results reveal that prioritizing the actuator traffic has a positive effect
on the overall network load due to reduced retransmissions.
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Figure 7: Goodput evolution for Scenario 1 with actuator and gateway traffic using a CS size
of 5.

Goodputs. Figure 7 shows that while PIT sizes have a significant impact on
the goodput at the gateway and at each actuator during normal operation, this
effect is reduced when QoS service classes are introduced. When using service
classes and the always caching decision strategy, network members with small
PIT sizes can reach a level of goodput that is comparable to those of the largest
PIT size during normal operation. With probabilistic caching in operation, the
network performance increases even further for larger PITs, which support a
higher number of concurrent flows that can leverage cache diversity better. This
overall enhanced transport performance is caused by flows that complete with
delay based on segment-wise available network capacities and retransmissions.
The corresponding temporal effects can be observed from Figure 8.

At actuator nodes far from the gateway, our QoS mechanisms mitigate the
effects of PIT exhaustion, which in normal operation leads to an abrupt collapse
of the throughput at around a rank of 6. Our QoS mechanisms cause a smooth,
gradual decline in performance instead.

Time to completion. We can see from Figure 8 that content arrival times are sig-
nificantly reduced for smaller PIT sizes when QoS service classes are introduced—
for traffic at gateways and even more at the prioritized actuators. Simultane-
ously, we see again a signature of enhanced traffic delivery for QoS-coordinated
flows that shows doubled success rates from 40% to 80%. It is worthwhile to
(re-)observe that the sensor traffic also experiences improvements due to a more
efficient balancing of resources—small PIT sizes in particular.

We now quantify the content arrival times specifically for each quality di-
mension. Figure 9 illustrates the nodal content arrival times with PIT and CS
sizes both set to 5. In all three displayed configurations, completion time in-
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creases with the distance to the gateway. Content arrival times range from 5 ms
to 350 ms for the majority of regular requests, and the reliable configuration
does not change this. In contrast, the prompt configuration yields noticeably
faster delivery times for all nodes, in particular nodes far away from the gate-
way experience a reduction of about 100 ms (≈ 30%). This shows that the very
light-weight priority queuing based on a simple double-buffer already shows an
important impact throughout the constrained network.

5. The Impact of Caching

5.1. Experiment Scenario 2: Sensing and Lighting Control

In the second scenario, we change the role of actuators but leave the sensor
readings unchanged. Instead of independent actuators that receive disjoint in-
structions, we envision a scenario of lighting in which groups of fixtures switch
lights in a coordinated way. Hence, these groups receive identical commands
and caching becomes applicable.

To explore the event space by mixing group memberships, our experiments
proceed as follows. For each request, an actuator randomly joins one out of
five possible ‘lighting’ groups. The naming scheme for such requests is changed
to include the selected group id, instead of a device-specific node id. Besides
naming, we use the same request parameters for the actuator traffic as in the
first scenario. We repeat this process 240 times for each configuration in order
to explore the state space of unevenly distributed groups and converge statistics.

In this scenario, prioritized actuator traffic flows from the gateway to multi-
ple destinations and thus benefits from on-path caching. Accordingly, we expect
the network performance to improve over that for Scenario 1.

5.2. Results

Success rates. The overall success results presented in Figure 10 confirm these
expectations. With this figure we dig deeper into network reliability and ex-
amine the success rates for a range of PIT sizes (scenario 1) and Content Store
sizes (Scenario 2) plotted against the node ranks.

Success in content delivery for the second scenario nicely approaches 100%
in most QoS settings, while in contrast Scenario 1 experiences significant loss
rates above 50% at the edges for all sizes of pending Interest tables. With
caching even for the most constrained number of 5 PIT entries, an increase
from 5 to 30 of the CS sizes suffices to turn traffic from QoS class reliable into
a fully reliable service. While we do see some failures at higher ranks for the
small CS size of 5 similar to Scenario 1, increasing the CS capacity to 10 is
already sufficient to attain success rates above 80%. The most striking contrast
is found in comparison to the results of regular NDN operation, where even
with a maximum CS size of 30 the failure rate stays at 30–40% at higher ranks.
Regular NDN traffic apparently profits less from cacheable content. This is
mainly due to PIT decorrelation, which breaks content flows.
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Figure 10: Success rates per rank for Scenario 1 and Scenario 2 using varying PIT and CS
sizes.

As previously observed, the success rate for regular actuator traffic collapses
at higher ranks. The sensor traffic performs similarly poorly. Increasing the
maximum PIT size gradually improves the nodal success rates. In addition to
the regular traffic, we further show actuator traffic with prompt & reliable QoS
service levels. Overall, the setups with prioritized traffic show great improve-
ments for the smaller PIT sizes, while the probabilistic caching decision strategy
performs slightly better than the always strategy. A surprising effect is observed
with a PIT size of 30: the success rates for all configurations decline slightly for
lower ranks. This is caused by an increased retransmission overhead per node,
resulting in link saturation.

Time to completion. QoS service classes have a significant impact on the content
arrival times for both the actuators and the sensors, as was already observed
for Scenario 1. Figure 11 reflects the same qualitative picture for Scenario 2,
but at significantly reduced probabilities of retransmission. The latter is due to
actuator traffic that is coordinated in QoS classes and coherently serviced from
caches—a large reduction in overall network load. Results slightly improve
for enhanced cache diversity in probabilistic caching, with 90% of the packets
arriving promptly (< 100 ms) at cache sizes of at least 10 packets. Similar to
Scenario 1, CS sizes become less relevant in the presence of QoS marking, since
prioritized traffic arrives quickly at its destination and remains unaffected by
regular cache replacement.

While we observe that increased CS sizes contribute to reduced completion
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times and improved success rates, we also notice that even a CS size of 30 does
not suffice for the regular configuration. On the other hand, the configurations
that use QoS service levels display close to 100% success rate, even with severely
limited CS sizes, and about 70% of all requests for each traffic type complete in
less than 100 ms.

Cache hits. Analysing the cache efficiencies supports these observations. Fig-
ure 12 displays the relative in-network cache hits for actuator traffic in setups
with varying CS sizes. While the regular NDN operation yields a marginally im-
proving cache hit ratio for increasing CS sizes, both QoS enabled setups exhibit
a noticeable enhancement. This improved cache efficacy is caused by the privi-
leged cache resource utilization for data of the reliable actuator traffic, whereas
data of the sensor traffic is more likely to be evicted. Another expected obser-
vation is that probabilistic caching further improves the cache hit ratio thanks
to its increased CS diversity.
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6. Preventing Starvation of the Commons

6.1. The Problem of Resource Starvation

Given that content in the CS is only replaced if new content arrives and that
unprioritized content may not replace prioritized content according to the rules
laid out in Section 3.2, it is easy to construct a scenario in which all CS space
is occupied by prioritized content, thus starving the unprioritized. An initially
distributed set of prioritized data chunks, for example, could block caches for an
unlimited time if followed only by content of lower priority. Moreover, if content
request rates reach a frequency at which retransmissions become necessary in
order to fulfil the requests, the fact that unprioritized content cannot rely on
the CS as a retransmit buffer means that unprioritized flows may no longer be
delivered at all.

One might expect the PIT to be affected by starvation in a similar manner,
with prompt entries crowding out regular entries; in practice, however, this
does not pose a problem, since as we have shown in Sections 4.4 and 5.2, the
improved PIT coordination gained through QoS coordination leads to a more
efficient utilization of the PIT space on the whole, while at the same time PIT
entries are erased quickly or time out.

6.2. Countermeasures and Experimental Evaluation

We can prevent starvation of CS utility for unprioritized content by introduc-
ing fairness measures that prevent prioritized content from blocking the CS and
can guarantee that some non-zero amount of unprioritized content can always
be cached.

Countermeasure for Cache Blocking. The first countermeasure is the introduc-
tion of a priority decay time τ . Any prioritized content that has been in the
CS for a time equal to or larger than τ is reclassified as unprioritized and may
thus be replaced by unprioritized content. In practice, τ may be chosen as an
average time of cache utility. The firing of this timer will prevent prioritized
content from blocking the cache for longer than useful in a mixed environment.

Countermeasure for Cache Squeeze Out. The previous measure alone, however,
may not be sufficient if the rate of incoming prioritized content is high, as
the replacement rules defined in Section 3.2 state that unprioritized content is
always replaced before prioritized content, meaning that the actual time the
unprioritized content is allowed to stay in the CS may be too short to be useful.

There are many ways to counter this threat of squeezing unprioritized con-
tent completely out of the caches, such as preallocated cache resources and
modified timers. Most of these countermeasures depend on parameters specific
to the traffic patterns and are therefore difficult to deploy in a general way. We
argue for a simple, generic solution as given by probabilistic caching, which as
we recall from Section 5 also enhances cache diversity. We will now quantify
the effects of probabilistic caching in a starvation scenario.
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Figure 13: Evolution of resource utilizations for a successor node of the gateway and an
actuator request interval of 5±1 s.

Experiment Configuration. We want to measure resource utilizations of the PIT
and CS data structures in setups with increased levels of network stress that are
prone to starvation. As before, we limit the PIT and CS resources on every node
in the topology to hold a maximum of 5 elements. We consider Scenario 2 as
described above, but reverse the priority roles: Sensor traffic is now prioritized,
while the cache-dependent actuator traffic remains regular. In this setting, we
thus emphasize the effects of cache starvation for unprioritized data traffic.

Resource Utilization. In this experiment, we measure the resource utilization
over time in order to identify starved traffic flows in environments with limited
PIT and CS resources and increasing network loads. Figure 13 depicts the
evolution of resources from the point of view of node gsr, which is a successor to
the gateway and resides on the right wing of Figure 5. gsr is root of a subtree
with 18 descendants and thus will experience extensive traffic in both directions.
Actuators emit unprioritized request-response flows in groups and the gateway
transmits prioritized sensor readings.

We first observe the distribution of sensor- and actuator-bound PIT entries.
Without prioritization, the PIT is mostly saturated with gateway traffic and
repeatedly denies actuator requests. This results from the close proximity of gsr
to the gateway node and the concomitant fast placement of gateway requests
into the PIT. Consistent with our observations in the previous sections, PIT
exhaustion relaxes with QoS enabled and resource occupancies almost equal out
between the traffic types due to better PIT coordination and faster consumption
of pending Interests. This improves slightly further with probabilistic caching in
place, since effectiveness increases and more content can be served from caches.
In both cases with QoS prioritization enabled, no signs of starvation are visible
at the PIT level.
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Figure 14: Average success rates and cache hits for different levels of actuator request intervals.

In contrast, the occupation of the Content Store clearly shows how unpri-
oritized content gets blocked from caching for the priority-guided cache always
policy. QoS features hence lead to a straight starvation of the CS resource for
unprioritized actor traffic. Probabilistic caching—used with the previously es-
tablished probabilities 0.7 for prioritized and 0.3 for regular traffic—seamlessly
resolves this starvation and enables about 30% cache placement for regular
packets on average.

Success of Network Operations. Figure 14 displays the corresponding success
rates for packet deliveries and cache hits for a series of actuator request intervals.
Network degradation and cache underutilization are clearly visible in the absence
of QoS as a result of uncoordinated network resources. Activating QoS with the
cache-always policy significantly improves the packet delivery success for both
traffic classes (as observed before), but prevents cache hits due to the cache
starvation observed above.

In contrast, probabilistic caching maintains the utility of the caches for the
unprioritized actuator traffic. Moreover, it improves the success rates of actuator
traffic without sacrificing the performance of the privileged communication.

7. Showcase: QoS Impact in Disaster Scenarios

We now demonstrate how differentiated ICN resource management can serve
the needs of challenged deployments such as constrained IoT edge networks in
disaster scenarios. Using realistic implementations on RIOT, we demonstrate
how very constrained devices in harsh environments can reliably communicate,
provided QoS measures are in place. These devices gradually invoke traffic
flows of different priority levels. In this setup, we contrast regular bulk traffic
admitting degradation in flow latency and reliability with QoS-enhanced traffic
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Figure 15: Resource allocation with and without QoS mechanisms in a disaster scenario.

differentiation and visualize the improved flow resource consumption of high
priority traffic on all nodes.

Challenges in disaster scenarios. In unforeseen disasters, a quick response is
imperative to prevent serious harm to people or the environment and to mini-
mize collateral damage. With this objective, first responders are sent into the
field to (i) assess the situation on-site, (ii) immediately administer first aid, and
(iii) call for appropriate further emergency support.

For an efficient operation, search and rescue forces require operational guid-
ance by command and control centers. Since regular communication infras-
tructures are often not available, first aiders are forced to deploy spontaneous
radio networks to enable data flows of different importance under intermittent
connectivity.

Typically, hand-held communication devices are attached to field units and
report back readings from sensors that are deployed in the equipment or the
immediate vicinity. Sensor devices are battery-operated with a small form factor
in order not to interfere with the mobility and maneuverability of rescuers.
NDN deployments have shown great potential to successfully operate in disaster
scenarios [61] by inherently providing in-network caches and intrinsic multicast
capability as well as support of consumer mobility.

Networked sensor devices form a spontaneous low power lossy network (LLN),
where device limitations can significantly impact the overall network perfor-
mance. To mitigate performance degradations for continuous and life-critical
traffic flows such as ECG heartbeat monitoring, the network must be able to
differentiate between traffic flows, become aware of flow-specific priorities, and
balance available resources according to these priorities.

The rescue case. Figure 15 illustrates our general setup for the two configu-
rations, with and without QoS features enabled. Our gateway continuously
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Figure 16: Heartbeat signals with and without QoS mechanisms.

requests heartbeat sensor readings and displays them on a dashboard. In addi-
tion, our communication device polls new audio messages every 10 seconds to
receive up to date fireground assistance. Once an audio message exists, the mes-
sage is bulk requested, thereby leading to resource saturation on the forwarder
and a disruption of continuous heartbeat readings on the gateway. We repeat
this setup with and without QoS features enabled and assign a high prioritiza-
tion to the heartbeat flow. On the dashboard, we illustrate an uninterrupted
heartbeat signal to indicate the low latency and high reliability characteristics
of our prioritized traffic flow, while slightly distorted audio messages are still
being dispatched to our communication device on the fire ground. Figure 16
pictures the results: While heartbeats without QoS support barely arrive at the
gateway, we see strong signals after the QoS features are enabled.

8. Conclusions and Future Research

We presented and analyzed QoS extensions to NDN that are suitable for con-
strained devices. Starting from a name-oriented flow classification scheme, we
introduced the two service dimensions prompt and reliable network forwarding.
Strategies were defined that not only foster local, isolated resource allocations,
but take into account coordinative actions between different internal resources of
a node, as well as correlations between nodes. Here, we exploited the rich set of
forwarding and caching options that NDN includes, while protecting resources
from starvation by applying fairness measures.

We were able to validate our approach in real-world experiments on a large
testbed using a realistic multi-hop wireless setup and in a realistic use case
implementation for the rescue domain. Moreover, we learned that QoS man-
agement in NDN is not confined to simple resource trading, but can lead to
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a global enhancement of network performance by optimizing the interplay be-
tween various resource consumptions. In particular, we found evidence that (i)
coordination of PIT and CS has a prevailing effect on the overall performance
of the networked system, and (ii) incorporation of Interests in QoS treatment
is vital to cater for resource coordination.

Future research shall explore the effects of these coordinative resource actions
in an Internet backbone and study the impact against resource decorrelation
when large multiplicities of competing flows are crossing in a densely meshed
core network.
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M. Wählisch, Gain More for Less: The Surprising Benefits of QoS Manage-
ment in Constrained NDN Networks, in: Proc. of 6th ACM Conference on
Information-Centric Networking (ICN), ACM, New York, 2019, pp. 141–
152.
URL https://doi.org/10.1145/3357150.3357404

[25] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. Schmidt, M. Waehlisch, Information-Centric Networking (ICN) Re-
search Challenges, RFC 7927, IETF (July 2016).
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