
ICNLoWPAN – Named-Data Networking for
Low Power IoT Networks

Cenk Gündoğan
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Abstract—Information Centric Networking is considered a
promising communication technology for the constrained IoT,
but NDN was designed only for standard network infrastructure.

In this paper, we design and evaluate an NDN convergence
layer for low power lossy links that (1) augments the NDN
stateful forwarding with a highly efficient name eliding, (2)
devises stateless compression schemes for standard NDN use
cases, (3) adapts NDN packets to the small MTU size of IEEE
802.15.4, and (4) generates compatibility with 6LoWPAN so that
IPv6 and NDN can coexist on the same LoWPAN links. Our
findings indicate that stateful compression can reduce the size
of NDN data packets by more than 70 % in realistic examples.
Our experiments show that for common use cases ICNLoWPAN
saves 33 % of transmission resources over NDN, and about 20 %
over 6LoWPAN.

Index Terms—Internet of things, low power lossy networks,
802.15.4, header compression

I. INTRODUCTION

The Internet of Things (IoT) has been identified as a
potential deployment area for Information Centric Networks
(ICN) [1], since infrastructureless access to content, resilient
forwarding, and in-network data replication demonstrated no-
table advantages over the traditional host-to-host approach on
the Internet [2]–[5]. Named Data Networking (NDN) [6] has
matured to a prominent, widely implemented flavor of ICN
that strictly couples data delivery to consumer requests. Recent
studies [7] have shown that NDN can outperform CoAP [8]
and MQTT-SN [9], the corresponding IP-based data services
for the constrained IoT. However, NDN lacks mechanisms for
packet adaptation and compression to comply with limitations
of wireless links prevalent at the low power IoT edge [10].

Common edge networks in the constrained IoT are built
from low power and lossy radios (see ”LLN” in [11]) such
as IEEE 802.15.4 [12], Bluetooth Low Energy (BLE) [13], or
LoRA [14]. Characteristics of LLNs include an unreliable en-
vironment, low bandwidth transmissions, and increased laten-
cies. IEEE 802.15.4 admits a maximum physical layer packet
size of 127 octets. With 6LoWPAN [15], [16], the IP-world has
created a convergence layer that provides appropriate frame
encapsulation formats, packet header compression and link
fragmentation for IPv6 packets in IEEE 802.15.4 networks.
The ICN world has not yet developed corresponding features
for constrained environments.

With this paper, we close the gap of LoWPAN conver-
gence for NDN. We leverage its potential of stateful for-
warding for eliding names on paths and design highly ef-
ficient compression primitives that outperform 6LoWPAN.
Our evaluations reveal significant gains in packet reduction,
energy consumption, and reliability. In addition to stateful
and stateless compression, we also contribute a fragmentation
scheme as well as a framing compatible to the 6LoWPAN
techniques. Real implementations under RIOT OS [17], [18]
and experimentation on a testbed of current IoT hardware
demonstrate the feasibility, robustness and energy efficiency
of our approach.

The remainder of this paper is organized as follows. The
subsequent Section II discusses the problem of NDN LoWPAN
adaptation and related work. In Section III, we introduce
our ICNLoWPAN convergence layer and detail out IPv6-
ICN coexistence, on-link fragmentation, and compression. A
thorough evaluation of the compression benefits follows in
Section IV. Finally, we conclude with an outlook in Section V.

II. PROBLEM SPACE AND RELATED WORK

The Internet of Things inherently connects numerous de-
vices of substantial heterogeneity. In this work, we focus
on deployment use cases that bundle low-end and battery-
operated microprocessors in wireless networks, where packet
transmission distinctly dominates power consumption. The
challenges we face in such scenarios are manifold and range
from limited MTUs, lossy links and mobility to link layers
that lack basic protocol features, such as frame encapsulation
formats (c.f. EtherTypes in Ethernet).

NDN couples name-based routing from TRIAD [19] with
stateful forwarding from DONA [20] and seamlessly leverages
in-network caching on the forwarding plane. The fundamental
request-response semantic on the network layer of NDN
requires an Interest message and a returning data message.
Both message types utilize flexible Type–Length–Value (TLV)
header fields to allow for generic and extensible packet formats
to the cost of space efficiency. Name TLVs are essential to
NDN and thus always appear in Interest as well as in data
messages. Depending on the naming scheme, human-readable
Name TLVs make up the largest part of a request, and also of
a response for many IoT use cases . We explore related work
that copes with strict message length limitations using headerISBN 978-3-903176-16-4 © 2019 IFIP



compression and fragmentation in IP networks first, and then
discuss proposed solutions for NDN.

IPv6 mandates a minimum MTU of 1280 bytes for each
link and thus precludes a proper IPv6 operation in low power
networks with small-sized MTUs. The IETF designed and
extends a set of protocols for constrained IoT deployments
where the 6LoWPAN convergence layer is an integral part of.
It is situated below the network layer and provides packet
encapsulation, stateless and stateful header compression as
well as a protocol independent link fragmentation scheme. A
generic header compression (GHC) [21] extends 6LoWPAN
with an LZ77 flavored approach to deal with headers and
header-like payloads that are not covered by the 6LoWPAN
compression specification. While 6LoWPAN proves necessary
for an interoperable and interconnected host-centric IoT, the
same challenges remain open for information-centric IoT
deployments.

Shang et al. [22] proposed a lightweight link fragmentation
scheme that prepends a 3-byte fragmentation header to each
NDN fragment to allow for messages larger than the limiting
MTU of IEEE 802.15.4. This custom header further supports a
minimal protocol identification by distinguishing normal NDN
messages from fragmented messages. However, this protocol
encapsulation collides with the 6LoWPAN encapsulation and
thus disregards interoperability with 6LoWPAN, especially in
multi-interface and multi-protocol deployments.

Another approach was presented by Mosko et al. [23],
which extends NDN with a new message type that encap-
sulates each message fragment. It also adds complexity to the
state machine for each peer to initialize fragment sequence
numbers and perform corrective actions in case of drifting
sequences after packet loss. A similar approach is the NDN
Link Protocol (NDNLP) [24], which features fragmentation
and reassembly as well as ARQ mechanisms. It provides
packet encapsulation to distinguish between normal NDN
messages and link acknowledgments. The last two approaches
add overhead in terms of memory consumption and error-
control messages which is a disadvantage for low power use
cases.

A secure fragmentation for content-centric networks that
does not rely on hop-by-hop reassembly and therefore de-
creases latency was derived by Ghali et al. [25]. Each fragment
is securely signed according to NDN semantics and can be
cached on intermediate routers. The authors propose a new
ContentFragment message type that includes a Name TLV
for forwarding purposes. Since NDN names are theoretically
of unlimited length, duplicating names for each ContentFrag-
ment message adds a significant overhead, which naturally
is controversial in constrained IoT networks. Furthermore,
sporadic disruptions and mobility in LLNs do not guarantee a
successful handover of each individual fragment to complete
the reassembly.

Yang et al. [26] focused on bandwidth reduction and an
improved storage utilization by translating long names into
short names for local communication. In this regard, a sensor
node registers a prefix at a sink node and receives a shorter

IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.4

6LoWPAN 6LoWPAN 6LoWPANICNLoWPAN ICNLoWPAN ICNLoWPAN
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Fig. 1: Stack traversal in a 6LoWPAN and ICNLoWPAN.

prefix, e.g., a hash as a name replacement. Ingress messages
that traverse the sink node are updated to include the short
name and egress messages respectively are updated to include
the long name. The proposed local name translation is trans-
parent to nodes outside the local IoT network. However, we
argue that a centralized approach to handle name translations
with registration and cancellation procedures adds complexity
that limits the scalability in large deployments.

In the following section, we concentrate on a fully dis-
tributed convergence layer that preserves compatibility with IP
LoWPAN, but takes advantage of the information-centric char-
acteristics to obtain a generically applicable, efficient though
uncomplex compressive encoding named ICNLoWPAN.

III. ICNLOWPAN

ICNLoWPAN provides a convergence layer that maps ICN
packets onto constrained link layer technologies to enable
pure NDN deployments without running as an overlay on top
of IP. Our convergence layer includes features such as link
fragmentation, protocol separation on the link layer level as
well as stateless and stateful header compression mechanisms.
Fig. 1 shows the overall network stack of a 6LoWPAN and
an ICNLoWPAN deployment in parallel for a consumer,
a forwarder, and a producer. Both convergence layers are
situated between the link layer and the actual network layer,
such that each message traverses them. This allows for a
transparent operation without the need for modifications on
the network layer.

A. 6LoWPAN Dispatching Framework

6LoWPAN defines a dispatching framework in [15], where
each frame is prepended with a 1-byte dispatch type and a
possible dispatch header. Several dispatch types exist already,
e.g., for stateless IPv6 compression, a mesh header for mesh-
under routing purposes, link fragmentation, and extensions to
expand the limited universe of possible dispatch types. One
of those extensions is the 1-byte page switch dispatch [27],
which arranges dispatch types into 16 pages and signals a
context switch to the packet parser to choose the proper page
before interpreting subsequent dispatch types.

ICNLoWPAN integrates into the 6LoWPAN dispatching
framework by defining four new dispatch types for Interest and
data messages that are either compressed or uncompressed.
Since page 0 and page 1 are already reserved for 6LoWPAN
usage, we allocate these dispatches from page 2 to allow for
coexistence with 6LoWPAN deployments. A prepended page



switch dispatch before the very first ICNLoWPAN dispatch is
thus necessary as an indicator to the dispatch parser.

A typical ICNLoWPAN message encapsulated in an
IEEE 802.15.4 frame is shown in Fig. 2. RFC4944 dispatches
are optional and may include all dispatch types defined in [15].
Note the 1-byte page 2 dispatch before the first ICNLoWPAN
dispatch. To switch back to 6LoWPAN dispatches after an
ICNLoWPAN dispatch, another page switch dispatch to page
0 or 1 is necessary.

A major benefit of reutilizing the 6LoWPAN dispatching
framework is to share a common code base for dispatch
handling. Notably for multi-interface and multi-protocol de-
ployments that make use of IPv6 and NDN simultaneously,
using the same code components in resource-constrained de-
vices is exceptionally valuable for minimizing RAM and ROM
requirements.

B. Fragmentation

Reusing the 6LoWPAN dispatching framework enables
ICNLoWPAN to seamlessly benefit from the protocol inde-
pendent link fragmentation scheme defined in [15]. It is thus
possible to fragment large NDN messages to fit the limited
maximum physical packet sizes of low power link layers, such
as 127 bytes for IEEE 802.15.4.

Practically, a fragmented NDN message includes a 4-byte
fragmentation dispatch header that lists the original datagram
size and a datagram tag to identify fragments of differing
packets. Subsequent fragments further include an additional
1-byte datagram offset of the payload in the dispatch header.
Fragments are reassembled on the next hop and passed to
the NDN network stack as typical NDN Interest or data
messages. The 6LoWPAN fragmentation scheme does not
define ARQ mechanisms to recover lost fragments, but rather
relies on corrective actions of the link layer. This allows for
implementations with minimal memory footprints.

C. Stateless Compression

ICNLoWPAN defines a stateless header compression
scheme with the main purpose of reducing header overhead
of NDN packets. This is of particular importance for link
layers with small MTUs and for increasing energy conser-
vation of battery-operated and wirelessly connected devices.
Corresponding dispatch headers in the ICNLoWPAN packet
provide the rule set for decompressing NDN messages before
handing the packet over to the NDN network stack.

1) TLV Compression: The NDN header format is solely
composed of TLV fields to encode header data. The advantage
of TLVs is a native support of variable-sized data. The main
disadvantage of TLVs is its verbosity that results in two extra
bytes for each header field from storing the type and length
of the encoded data.

802.15.4
Header

RFC4944
Dispatches

Page 2
Dispatch

ICNLoWPAN
Dispatches

802.15.4
FCS

Fig. 2: IEEE 802.15.4 encapsulated ICNLoWPAN message.

1 0 1 0 0 0 0 0 . . . len value value . . .

bit field fixed length

Fig. 3: Eliding type and length fields using compact bit fields.

The stateless header compression scheme of ICNLoWPAN
makes use of compact bit fields to indicate the presence of
optional TLVs in the uncompressed packet as illustrated in
Fig. 3. Each type that is present in the bit field is thus
elided from the actual TLV representation, which translates
to a reduction from 1 byte to 1 bit. Further compression is
achieved with eliding the length of TLVs that either represent
fixed-length header data, or where the length can be assumed
from surrounding TLVs. We also achieve smaller encodings
by specifying sane default configurations for IoT use cases.

2) Name Compression: A Name TLV is substantial to NDN
messages and usually consists of several name components,
each of variable size. An Interest message essentially carries
the Name TLV and a data message returns either the same
TLV, or a more specific variant with an equal prefix. The
NDN TLV encoding requires at least two bytes for each name
component (type + length) and an extra two bytes for the outer-
most Name TLV. The TLV overhead for a name is displayed
in Eq. 1, where |c| is the number of components.

TLV overhead = 2 + 2 · |c| (1)

ICNLoWPAN provides a compression scheme for Name
TLVs that drastically reduces the TLV overhead of each nested
component. This compression encodes length fields of two
consecutive component TLVs into one byte, using 4 bits each
as displayed in Fig. 4. This process limits the length of a
component TLV to 15 bytes. To further elide the outer-most
length field of the name, this scheme utilizes a stop marker.
For an odd number of components, the stop marker is encoded
into the least significant 4 bits of the current length byte. On
an even number of components, the full length byte is already
occupied with two name components. In this case, a stop byte
is appended to the last component as shown in Fig. 4.

x0 x1 x2 x3 y0 y1 y2 y3 . . . . . .

. . . x0 x1 x2 x3 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0

0 < x ≤ 15 0 < y ≤ 15 1. Comp. 2. Comp.

stop last Comp.

last Comp. stop

odd

even

Fig. 4: Stateless name compression and stop marker for odd
and even number of name components.

Compressed names yield a significantly lower TLV over-
head as displayed in Eq. 2, where |c| again is the number of
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Fig. 5: Stateful header compression using en-route forwarding state.

components. The ceil operator handles both cases of odd and
even for |c|.

TLV overhead =

⌈
|c|+ 1

2

⌉
(2)

The total TLV overhead reduction for names thus follows
from Eq. 1 and Eq. 2 and is a function of |c|: d1.5 · |c|e+ 1.

D. Stateful Compression

ICNLoWPAN further employs two stateful compression
schemes to enhance size reductions. These mechanisms rely
on shared contexts that are either distributed and maintained
in the whole LoWPAN, or are generated and maintained on-
demand for a particular Interest-data path. Our stateless and
stateful compressions are applied in succession to produce
huge compression savings, which we show in Sec. IV.

1) LoWPAN-local State: A context identifier (CID) is a
1-byte number that refers to a particular conceptual context
between networked devices and may be used to replace
frequently appearing information, like name prefixes, suffixes,
or meta information, such as an Interest lifetime. This allows
for a reduction of potentially long data to a single byte.
Shared context has to be initially distributed on compile-time
or dynamically maintained on run-time in order for a device
to properly encode and decode NDN messages.

The convergence layer replaces header fields of outgoing
Interest and data packets with CIDs maintained in a CID
state table. Context identifiers follow the last ICNLoWPAN
dispatch, while the most significant bit of a CID signals the
presence of a subsequent CID. On reception, the original
packet is restored and passed to the network layer.

2) En-route State: An NDN Interest requests data by a
name or a prefix which is then returned in the correspond-
ing data packet. This duplication generates large overhead
in particular for long names. To deduplicate we make use
of ephemeral 1-byte HopIDs that replace the name in data
responses and link them to entries of the Pending Interest
Table (PIT). The PIT is a fundamental component of NDN
that hop-wise matches the returning responses to open requests
by name. HopIDs must be unique within the local PIT and
only exist during the lifetime of a PIT entry. We extend the
PIT by two new columns to manage these HopIDs. HIDi for
inbound HopIDs and HIDo for outbound HopIDs as visualized
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Fig. 6: Distribution of percental name compression ratios.

in Fig. 5. We emphasize that even though PIT entries are
extended by two additional bytes, the overall RAM consump-
tion on link commitment reduces due to smaller packets and
corresponding message buffers.

Before sending an Interest, a node generates a HopID and
stores it in the local HIDo column. This Interest then includes
the generated HopID along with the name. On the next hop,
the HopID is extracted from the Interest and stored in the
HIDi column of the respective PIT entry. The forwarder then
generates a new HopID, stores it in the HIDo column of the
particular PIT entry, and puts this HopID into the Interest
message before it is forwarded to the next hop. This process
is repeated for each hop until the request can be satisfied with
the corresponding response as displayed in Fig. 5a.

The producer of a returning data message reverses this
process by obtaining a HopID from the HIDi column of
a PIT entry and encodes it into the response message. If
the returning name equals the original name, then it is fully
elided. Otherwise, the distinct suffix is included along with the
HopID. When a response is forwarded, the contained HopID
is extracted and used to match against the correct PIT entry by
performing a lookup on the HIDo column. The HopID is then
replaced with the corresponding HopID from the HIDi column
before forwarding the response, as visualized in Fig. 5b.

E. Name Compression Performance

Our proposed stateless and stateful name compression
mechanisms are of simple nature and do not exhaust scarcely
available CPU resources. The compression ratio is highly
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Fig. 7: Intra-stack average processing times for CoAP, NDN, and ICNLoWPAN

dependent on 1) the number of name components as they
dictate the overall TLV overhead and 2) the length of the prefix
omitted from the name. To quantify the effects, we analyze the
average name compression performances in Fig. 6 for 356·106
real-world URI paths obtained from the WWW, where each
component does not exceed 15 bytes. Before applying our
compression scheme, we encode all names as NDN Name
TLVs. First, we elide the hostname from each URI as part of
our stateful compression in Sec. III-D. This yields an average
compression ratio of 43.5 %. Second, we apply the stateful
name compression described in Sec. III-C2 to reduce the
TLV overhead and observe a compression ratio of 56.3 %
on average. We believe that typical names in a low power
IoT edge network will yield similar, if not better, compression
performances.

IV. EVALUATION

A. Experiment Setup

1) Protocol Comparison: We consider two different NDN
deployments for low power IoT networks. In the first ex-
periment, we run NDN directly on top of IEEE 802.15.4.
Due to the small MTU of this particular link layer, we limit
packet sizes to a maximum of 100 bytes. In the second
experiment, NDN runs on top of ICNLoWPAN with activated
stateless and stateful compression. We further compare our
NDN setups with a typical 6LoWPAN operation that uses UDP
as a transport protocol and CoAP as an application protocol.
We specifically compare against the GET method of CoAP
as it provides a request-response pattern analog to NDN. We
deploy our devices in two different network configurations.

a) Single-hop: A consumer device has managed FIB
entries to a producer device and vice versa. In our NDN
deployment, the producer initially creates all content objects.
The 6LoWPAN producer configures a callback function as a
CoAP endpoint for a particular URI to trigger a response.

b) Multi-hop: An extra forwarding device is added to the
network topology, such that requests and responses between
the consumer and producer traverse through the forwarder.

2) Hardware & Software Platform: We conduct all our
experiments on typical class 2 [11] devices that feature an
ARM Cortex-M0+ MCU with 32 kB RAM, 256 kB ROM and
up to 48 MHz CPU frequency. Each device further provides
an Atmel AT86RF233 [28] 2,4 GHz IEEE 802.15.4 radio
transceiver. We set the radio transmission power to 0 dBm,
the receiver sensitivity to -94 dBm and enable the Smart
Receiving feature, an energy saving mode for idle listening.
For our power consumption measurements we make use of
on-board current measurement headers on each of our devices.
We measure currents using a Keithley DMM7510 7½ digit
graphical sampling multimeter with 1 MHz sampling rate and
control it with external I/O lines to trigger start and stop from
events generated by our network stack. Devices under test are
powered by a regulated external DC power supply and connect
via UART to a Linux control node to obtain experiment results.

In each experiment, our devices operate RIOT OS version
2018.10. Our NDN deployments use the CCN-lite [29] pack-
age and our 6LoWPAN experiments are based on the default
GNRC network stack of RIOT OS. We integrate ICNLoWPAN
into the 6LoWPAN module of RIOT OS to reutilize the code
base of the dispatching framework and link fragmentation.

3) Name Configuration: Name lengths proportionally affect
processing times, packet lengths and consequently energy ex-
penditure during transmissions. This especially impacts NDN
as names are included in requests as well as in responses. We
use two different names in our experiments to measure the
effects of our stateless and stateful compression mechanisms.

a) Nameshort: We use a short name with 4 components
to denote temperature readings produced by a sensor. The
name is of the form /org/example/temp/idx, where idx
is an increasing number for each request. A CID is configured
for /org, such that this prefix is elided from all messages.
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b) Namelong: We use a long name with 10 compo-
nents of the form /org/example/building/1/floor/
4/room/481/temp/idx. A CID is configured for the prefix
/org/example/building/1/floor/4/room/481 to
elide a considerable portion of the name.

B. Theoretical Evaluation

In this first evaluation, we analyze NDN and CoAP packet
sizes for a typical IoT scenario using Namelong as a CoAP
endpoint and as a naming scheme for NDN. We further
configure responses of both protocols to return 4-byte signed
integer values that represent temperature sensor readings.

Fig. 8 depicts the actual packet sizes for each protocol.
Our CoAP request has a packet size of 97 bytes, where
3 bytes are used for 6LoWPAN dispatches, 32 bytes for the
compressed IPv6 header and 6 bytes for the UDP header. The
remaining 56 bytes are used by the actual CoAP message. The
respective CoAP response requires considerably less, which
follows from CoAP omitting URIs in responses and using
tokens to match against open requests on the requesting node.
In our setup, CoAP uses 2-byte tokens for each request and
returns the exact token in the response. The NDN Interest
message nets to 70 bytes, whereas the returning data message
requires 79 bytes. Contrary to CoAP, returning responses
in NDN include the name of the request, or even a more
specific and longer name. The displayed data message further
contains empty Signature TLVs. The equivalent ICNLoWPAN
compressed NDN messages are significantly shorter, where
the Interest message reduces down to 19 bytes (72 % savings)
and the data message down to 15 bytes (81 % savings). For
Interests, this gain is mainly due to leveraging the configured
stateful name compression and data messages naturally benefit
from eliding the full returning name. In addition to the
compressed messages, we require a 1-byte page dispatch, 1-
byte ICNLoWPAN dispatch, and a 1-byte HopID for Interest
and data. The compressed Interest packet further includes a
1-byte CID indicating the elided prefix for the stateful name
compression.

C. Experimental Evaluation

The theoretical evaluation indicates that ICNLoWPAN sub-
stantially reduces packet sizes in Named-Data IoT networks
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Fig. 9: Average bytes per request–response.

with pull-driven traffic patterns. In this experimental evalua-
tion, we want to explore the effects of our convergence layer
on resource-constrained nodes to gauge the feasibility for real-
world low power networks. In particular, we measure (i) intra-
stack processing times, (ii) average message overhead for a
request-response handshake, (iii) energy expenditure during
transmissions for single-hop and multi-hop deployments, (iv)
and effects on reliability when periodically requesting sensor
values while we enable randomized and bursty cross-traffic.

1) Processing Times: We first evaluate intra-stack pro-
cessing times in a multi-hop deployment, where a consumer
requests every 500 ms a specific temperature reading from a
producer using Nameshort and Namelong . Timestamps for the
link layer, convergence layer (LoWPAN), and upper layers
are recorded for each packet using a hardware timer on
each device with µs precision. The link layer time depicts
operations of the RIOT OS radio driver including SPI transfer
of the packet to the radio frame buffer with 5 MHz. This mea-
surement does not contain the actual transmission or reception
of a frame over the wireless medium, as this procedure does
not load the CPU. Time spent in the LoWPAN module includes
the handling of dispatch headers and packet (de-)compression.
Processing times for the network layer and beyond either
include IPv6, UDP, and CoAP or NDN operations in addition
to the actual application on top that issues or satisfies requests.

Fig. 7 displays experiment results for the different roles of
a consumer, forwarder, and producer. We first observe that
for the Nameshort configuration, the additional processing
overhead of ICNLoWPAN does not pay off on the link layer.
Thus, some measurements with ICNLoWPAN take slightly
more CPU resources than plain NDN. Conversely, savings
on the link layer for our Namelong configuration visibly
outperform the ICNLoWPAN processing overhead, especially
for response packets by a decrease of ≈ 100 µs per packet.

2) Message Sizes: We now analyze the amount of bytes that
are transmitted between consumer, forwarder, and producer
when performing a request-response handshake in Fig. 9. The
captured packets include the message lengths of Fig. 8 in
addition to 21 bytes for an IEEE 802.15.4 header and 2 bytes
for FCS. While comparing the Nameshort and Namelong
configurations, we observe an increase in sent bytes for the
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Consumer Forwarder Producer

Nameshort Namelong Nameshort Namelong Nameshort Namelong

CoAP 548.58 µJ 612.24 µJ 967.41 µJ 1072.07 µJ 464.73 µJ 517.96 µJ

NDN 526.23 µJ 687.26 µJ 880.68 µJ 1152.02 µJ 422.55 µJ 584.82 µJ

ICNL 466.09 µJ 487.32 µJ 769.17 µJ 773.97 µJ 369.84 µJ 395.19 µJ

TABLE I: Energy consumption in µJ

CoAP and NDN consumer, whereas ICNLoWPAN reduces the
amount of sent bytes due to a better utilization of our name
compression scheme. We interestingly see that the amount of
sent bytes for the CoAP producer stagnates, while the amount
for our NDN producer increases. This follows from the fact
that CoAP responses do not include the URI component, but
rather a fixed-length token to match against open requests. In
contrast, the NDN data message does include the full name
that is obtained from the request, which leads to significantly
increased message sizes from Nameshort to Namelong .

3) Energy Consumption: ICNLoWPAN decreases the total
amount of bytes over the air with both name configurations
compared to NDN. We observe a strong reduction of bytes for
responses at the producer for both name configurations, since
the name is fully elided. The reduction is most prominent for
the Namelong configuration at the forwarder with a drop by
60 % from 191 bytes down to 76 bytes. This gain is to be
expected, considering that the forwarder is involved in four
transmissions.

The packet length during transmission has an immediate
effect on the energy consumption. We measure the current
while sending and receiving messages for each role separately
in a single-hop setup and display the results in Fig. 10
for Namelong. The graphs involve transmission over the

wireless, radio turnaround time as well as link layer frame
acknowledgment. In our setup, sending draws slightly higher
current than receiving and the duration of each transmission
depends on the packet length. In fact, the duration of each
depicted measurement correlates with the respective message
size displayed in Fig. 8 and the results showed in Fig. 9, so that
larger messages yield longer periods of operation for sending
and receiving.

On the consumer, we observe that our CoAP request re-
quires 5 ms to complete, while the respective NDN request is
transmitted in 4 ms, including the reception of acknowledg-
ments for both. Conversely, the CoAP response is received
by the consumer in 3.8 ms, while the NDN response com-
pletes in 4.2 ms, including the sending of acknowledgments.
With ICNLoWPAN in operation, we notice a decrease of
transmission times by around ≈ 50 % on the consumer due
to compressed messages and the resulting shortened media
utilization. As expected, the reduction for responses is more
prominent due to fully eliding Name TLVs. On the producer,
we naturally observe mirrored results for each operation.

Given the fact that current draws for transmissions in Fig. 10
are mainly similar, the actual energy consumption is predom-
inated by the transmission durations. We thus analyze the
overall power consumption of a request-response handshake
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Fig. 11: Total energy consumption for multi-hop networks.

in a multi-hop setup for Nameshort and Namelong including
processing times and transmission durations in Tab. I. Our
results indicate an increase in energy usage for each role
with the Namelong configuration compared to the Nameshort
configuration. We further notice that our producer spends the
least amount of energy, followed by the consumer, and our
forwarder expends nearly double the amount of energy than
the producer. The increased power consumption is inherently
consistent with the fact that the forwarder is involved in two
request and subsequently in two response transmissions.

The NDN consumer device uses 4 % less energy for
Nameshort and 12 % more energy for Namelong compared
to the CoAP consumer. This turnaround in energy expenditure
for Namelong is twofold. 1) NDN has a more verbose name
encoding than CoAP and 2) CoAP does not include the
URI in the response. ICNLoWPAN reduces energy usage of
our NDN consumer by 11 % for Nameshort and 29 % for
Namelong . Our NDN producer consumes 9 % less energy for
Nameshort and 13 % more energy for Namelong compared
to our CoAP producer. The energy consumption reduces
by 12 % for Nameshort and 32 % for Namelong with an
enabled ICNLoWPAN operation compared to NDN. Since
our forwarder interacts with four transmissions, we observe a
natural increase in overall expenditures. The NDN forwarder
consumes 9 % less power for Nameshort and 7 % more energy
for Namelong compared to the CoAP forwarder. In contrast,
ICNLoWPAN reduces the expenditure by 13 % for Nameshort
and 33 % for Namelong. The trend that ICNLoWPAN yields
higher energy savings for Namelong becomes apparent.

Finally, we calculate the energy consumption of a full
request-response handshake for a multi-hop setup with a vary-
ing number of forwarders between a consumer and producer
in Fig. 11. For all setups, we see an increase in expenditure for
CoAP, NDN, and ICNLoWPAN with an increasing number of
forwarders. We again notice that the power consumption for
NDN surpasses the consumption for CoAP using the Namelong
configuration due to returning Name TLVs in the response.
ICNLoWPAN clearly reduces the overall energy consumption
of an NDN handshake for both configurations Nameshort
and Namelong . Interestingly, despite the increase in power
consumption for NDN versus CoAP, ICNLoWPAN manages
to cut expenditures by ≈ 25 % for a setup with ten forwarders
compared to NDN.

4) Reliability: In this experiment we investigate the re-
liability of a typical data retrieval setup in our single-hop
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1000–3000 ms 500–1500 ms 1000–3000 ms1000–3000 ms 500–1500 ms 1000–3000 ms
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success fail

Fig. 12: Radio interference due to bursty cross-traffic.

deployment, where a consumer periodically requests temper-
ature values from a producer every 300 ms. We additionally
generate bursty cross-traffic in randomized intervals to a third
party in order to mimic a dense network with multiple devices
that periodically request sensor readings. Fig. 12 illustrates
the configured traffic pattern of our cross-traffic with each
burst consisting of 200 UDP packets in succession with a 5–
15 ms delay in between each transmission and a radio silence
interval of 500–1500 ms. It is worth noting that our cross-
traffic only adds wireless interference as the IEEE 802.15.4
frames are not delivered to the devices due to automatic MAC
address filtering in hardware of the radio module. We further
disable CSMA/CA and frame retransmissions of the radio
transceiver to explore reliability gains without distortions of
automatic corrective actions in hardware. Indeed, disabling
such hardware features in real deployments is not a far-fetched
scenario as sophisticated link layer protocols that employ time-
slotted algorithms must satisfy strict time constraints, while
CSMA/CA and retransmissions lead to indeterministic and
drifting media accesses. In fact, several radio transceivers that
dual operate IEEE 802.15.4 and Bluetooth Low Energy do not
even support such mechanisms in hardware, but rather rely on
software implementations.

Tab. II lists the packet reception ratio (PRR) for consumer
and producer roles using the Namelong configuration. For
each deployment the number of received requests on the
producer lies within ≈ 93–94 %. Conversely, the percentage
of successfully received responses on each consumer clearly
varies between ≈ 73–76 % for CoAP and NDN and ≈ 93 %
for our ICNLoWPAN operation.

The performance gain of ICNLoWPAN results from
strongly compressed packets which lead to a significantly
reduced on-air time for the low power wireless transmission
(see Fig. 10). This reduces collision probability with interferer
traffic, especially when responses are sent during a burst
as shown in Fig. 12. Furthermore, responses of a producer
always follow the successful reception of a request. Reduced
transaction times with ICNLoWPAN leave more time to the

CoAP NDN ICNL

Producer 93.53 % 94.05 % 94.40 %
Consumer 73.25 % 75.98 % 93.06 %

TABLE II: Packet Reception Ratio (PRR)



next interferer transmission within a burst, which further
reduces the probability of overlapping cross-traffic compared
to the NDN and CoAP operation.

V. CONCLUSIONS

IoT networking has proven to benefit from information-
centric architectures in several directions. In this paper, we
worked out the components for adapting NDN to a LoWPAN
edge: compression, framing, and fragmentation. By leveraging
the NDN stateful forwarding for compression on path, we
could again take specific advantage of the information-centric
approach in low power lossy IoT networks.

Extensive measurements of our implementation on IoT
hardware revealed these benefits in comparison with plain
NDN and the IP world (CoAP over 6LoWPAN). Our experi-
mental results clearly showed that ICNLoWPAN outperforms
NDN and CoAP in terms of media utilization as well as
energy consumption. ICNLoWPAN further reduces end-to-
end latencies in multi-hop scenarios, and contributes to an
improved reliability in lossy environments while preserving
battery resources. Depending on the use case, savings typically
range from 20 % to 33 %.

With these results, we hope to contribute insights to the
community and to encourage deployment of NDN in the
constrained IoT. Our future work will concentrate on extending
ICNLoWPAN to different low power link technologies, such
as BLE and align with adaptation layers for wide-area and
cellular technologies to enable LoRA and NB-IoT for a
versatile, efficient, and robust information-centric Internet of
Things.
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