Demo: Seamless Producer Mobility for the Industrial Information-Centric Internet

Cenk Gündoğan1, Peter Kietzmann1, Thomas C. Schmidt1, Martine Lenders2, Hauke Petersen2, Matthias Wählsch2, Michael Frey3, Felix Shzu-Juraschek3
1HAW Hamburg, 2Freie Universität Berlin, 3MSA Safety
{cenk.guendogan, peter.kietzmann, t.schmidt}@haw-hamburg.de
{martine.lenders, hauke.petersen, m.waehlsch}@fu-berlin.de
{michael.frey, felix.shzu-juraschek}@msasafety.com

1 MOTIVATION & USE CASE

The Industrial IoT commonly couples sensors and actuators with remote cloud services to facilitate business and safety critical requirements. In our use case, IoT systems are deployed in hazardous environments attached to field workers who move freely, while being threatened of exposure to combustible or toxic gases. Sensor alerts are used to trigger alarms both to the local vicinity and to remote rescuers. In addition, regulatory processes require sensor readings to be aggregated and persisted for later analysis and complex evaluations. Delivering sensor data continuously from mobile workers to the IoT network and towards the cloud is vital and demands for a seamless and resilient mobility support of data sources throughout the network.

We approach these challenges based on Named Data Networking (NDN) [3]. Stateful forwarding and in-network caching of this ICN technology offers high potentials for resilience on the network layer. We deploy our Publish–Subscribe scheme HoPP [2] that seamlessly supports producer mobility and other topological changes. It further provides disruption tolerance and ensures extended sleep cycles for a prolonged battery lifetime in the IoT.

2 DEMO SETUP & DESCRIPTION

Our demonstration showcases a mobile worker with an intelligent helmet that is equipped with gas sensors and an IoT node (see Fig. 1).

The IoT node periodically reads the sensors and initiates a regular recording or triggers an alarm once a threshold is exceeded. The worker moves within the hazardous environment sketched in Fig. 2.

Operating the HoP and Pull pub/sub scheme, upstream communication is initiated whenever possible. In the presence of mobility-related disconnects of the worker or intermediate wireless nodes, the store-and-forward capabilities propagate data hopwise towards the IoT gateway. During a mobility handover, the NDN content store caches sensor readings until the node is able to reattach to a network.

REFERENCES