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Long-range radio communication is preferred in many IoT deployments, as it avoids the complexity of multi-
hop wireless networks. LoRa is a popular, energy-efficient wireless modulation but its networking substrate
LoRaWAN introduces severe limitations to its users. In this article, we present and thoroughly analyze DSME-
LoRa, a system design of LoRa with IEEE 802.15.4 Deterministic Synchronous Multichannel Extension (DSME)
as a MAC layer. DSME-LoRa offers the advantage of seamless client-to-client communication beyond the pure
gateway-centric transmission of LoRaWAN. We evaluate its feasibility via a full-stack implementation on the
popular RIOT operating system, assess its steady-state packet flows in an analytical stochastic Markov model,
and quantify its scalability in massive communication scenarios using large-scale network simulations. Our
findings indicate that DSME-LoRa is indeed a powerful approach that opens LoRa to standard network layers
and outperforms LoRaWAN in many dimensions.
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1 INTRODUCTION

LoRa is a popular wireless modulation for the IoT that is robust against interference and Doppler
effect. It uses narrowband Chirp Spread Spectrum modulation to achieve long-range transmission
(km) with low power consumption (mW). LoRa operates in unlicensed spectra and therefore is
subject to regional regulations that shall prevent a saturation of the spectrum. In Europe, the ETSI
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EN300.220 standard [17] limits the transmission duty cycle to 0.1%, 1%, or 10%, depending on the
sub-band.

LoRaWAN was designed as an upper layer for LoRa that provides Media Access Control and In-
ternet communication between LoRa end devices and end-user applications. LoRaWAN is a cloud-
based Media Access Control (MAC) layer for LoRa that organizes Physical Layer (PHY) config-
urations and MAC schedules and routes traffic between end devices and end-user applications.
The LoRaWAN architecture consists of three components: an Application Server, which contains
the application logic; a Network Server, which coordinates access to the media between nodes
and routes traffic between the Application Server and End Devices; and Gateways, which act as
the backbone of the LoRaWAN network. The architecture prevents peer-to-peer communication
between end devices, which operate without network layer.

LoRaWAN defines three operational classes (modes) that show a tradeoff between downlink
delay and power consumption. With class A, the reception of downlink packets is only possible
during a short interval after an uplink transmission. Consequently, class A devices exhibit a high
downlink latency, but the highest power efficiency. With class C, the end devices are always lis-
tening. The downlink latency is consequently lowest at the cost of a high energy consumption.
In class B, beacon-synchronized end devices wake up periodically to be able to receive data. This
class provides a good tradeoff between downlink latency and power consumption.

LoRaWAN imposes a series of limitations, which make it impractical for scenarios with het-
erogeneous communication patterns. To increase the LoRa versatility as well as its efficiency, we
propose the usage of IEEE 802.15.4 DSME as a MAC layer for LoRa. DSME is a flexible MAC layer
introduced in the 802.15.4e revision (2012) that provides communication in contention-access, as
well as contention-free (time/frequency slots).

In this article, we want to answer the research question of how LoRa can be integrated with
such a flexible MAC layer and how this stack performs in various settings. In particular, we want
to show how LoRa end nodes can be opened up for hosting various network layers such as standard
IP or data-centric adaptations [32]. The contributions of this article are as follows:

(1) We present DSME-LoRa, a system design of LoRa with IEEE 802.15.4 Deterministic Syn-

chronous Multichannel Extension (DSME) as a MAC layer.
(2) We evaluate in this work the performance of DSME-LoRa on real hardware, based on a

DSME-LoRa implementation [5] on the popular IoT operating System RIOT [7].
(3) We propose a novel analytical stochastic model to predict transmission delay and throughput

for DSME slotted transmission.
(4) We perform a large-scale simulation of DSME-LoRa nodes to assess the scaling behavior of

our proposed solution.
(5) Based on the evaluation and model results, we derive preferred mappings for implementing

different transmission patterns, with a balance tradeoff of energy consumption and trans-
mission delay.

The remainder of this article is structured as follows: We outline the shortcomings of the cur-
rent LoRaWAN system along with a problem statement in Section 2. The relevant background
on low-power radio communication is summarized in Section 3. Section 4 presents our DSME-
LoRa system design, which we evaluate on real hardware in Section 5. We develop an analytical
stochastic model in Section 6, from which we predict the per-packet performance for the slotted
transmission. Peer-wise communication in large ensembles of LoRa nodes is subject to a simu-
lation study in Section 7. In Section 8, we discuss design decisions and options for optimization.
Finally, we review related work in Section 9 and give a conclusion and outlook in Section 10. The
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Fig. 1. Control traffic of smart lighting scenario in LoRaWAN (left) through a gateway (GW) and direct
communication (right).

Appendix provides a supplementary figure (Section A) and lists a table of abbreviations (Section B)
that we use throughout this article.

2 PROBLEM STATEMENT

The common LoRaWAN architecture adds rigid constraints to long-range networking, which hin-
der many IoT deployments. Its centralized design facilitates uplink-oriented applications but chal-
lenges data sharing and the creation of distributed applications.

We argue that direct communication between LoRa devices overcomes these limitations, while it
still enables reliable communication in long-range deployments or harsh environments. To further
motivate the need for direct communication, we analyze an IoT control scenario for smart lighting.

Sanchez-Sutil et al. [20] design a LoRa system for smart regulation of street lights (see Fig-
ure 1(b)) and propose an architecture with illumination-level devices (sensors), which transmit
sensor data every minute. A gateway for street lights system (controller), which acquire illumina-
tion data from sensors, transmit control messages to actuators and send measurement data from
street lights to the cloud. Operating and monitoring devices for street lights (actuators) control
light level and transmit electrical measurements to the controllers. The authors deploy several
scenarios (up to 64 actuators) with all devices in LoRa wireless reach.

A LoRaWAN implementation of such system may move controller logic to the cloud application
and use LoRaWAN to transmit data between sensors and actuators (see Figure 1(a)). However, this
approach has the following disadvantages:

(i) Traffic between controller and actuator is forced through LoRaWAN gateways. If controllers
transmit unicast control data every minute to all actuators, then nearby gateways will forward
64 downlink packets per minute. Even if the LoRa devices and the LoRaWAN Network Server
agree on the fastest downlink data rate, a single gateway scenario will render 7% duty cycle. Be-
cause LoRaWAN gateways are half-duplex, packets received during downlink transmission are lost.
Therefore, such a deployment requires at least two dedicated gateways to enable a Data Extrac-
tion Rate (DER) ≥99%. In regions with duty cycle regulations such as EU868, even more gateways
are required to prevent additional packet losses as a result of downlink budget depletion. Adding
more gateways addresses these problems, but it increases deployment costs and it is not always
practical.

(ii) The LoRaWAN infrastructure prevents the deployment of edge devices and blindly forwards
sensor data to the cloud infrastructure. To further motivate the usage of edge devices, consider a
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deployment in the city of London (≈2.8 million street lights). If sensors are on par with actuators
and transmit every minute, then the cloud infrastructure receives 1.5 trillion LoRaWAN messages
per year, which artificially leads to a cost explosion in cloud infrastructure.

(iii) Devices with poor LoRaWAN wireless coverage increase transmission time on air to improve
link budget. This increases energy consumption [36], which reduces life cycle of nodes.

(iv) In many remote areas, cellular networks are the only uplink options for LoRaWAN gateways.
Poor Internet connectivity will lead to packet loss at the gateway, which threatens the versatility
of the control system.

The proposed smart lighting topology (see Figure 1(b)) overcomes the limitations of the
LoRaWAN architecture. Instead of using a centralized controller in the cloud, the system imple-
ments low-cost controllers that run the control logic in a distributed way. Therefore, downlink
traffic is distributed between many controller devices instead of aggregating at a few gateways.
This effectively reduces downlink stress. Because sensors and controllers are likely in wireless
reach, sensors can transmit using a fast data rate, which facilitates battery-powered operation.
Controllers can transmit preprocessed data at a lower rate, which effectively reduces cloud trans-
missions and infrastructure costs. The system does not interrupt control operation in case of inter-
mittent connectivity at controllers. In addition, controllers are free to implement caching strategies
to reduce packet loss on intermittent Internet uplinks.

In light of this use case, we argue that a DSME MAC should perform better than the proposed
system for two reasons: (i) DSME enables multichannel time-slotted communication, in contrast
with the single channel approach of the system. This enables concurrent collision-free communica-
tion without special hardware requirements (e.g., LoRa concentrator). Therefore, controllers may
be implemented with low cost components, while still maintaining high Packet Reception Ratio
(PRR). (ii) DSME offers powerful built-in features such as device discovery and security mecha-
nisms, which facilitate deployment and secure operation.

We follow the DSME-LoRa direction in the remainder of this article to foster flexible long-range
node-to-node communication.

3 BACKGROUND ON LOW-POWER RADIOS

3.1 IEEE 802.15.4 with DSME MAC

The Deterministic and Synchronous Multichannel Extension (DSME) initiates a beacon-
synchronized superframe structure that consists of a beacon slot, a Contention Access Period
(CAP) and a Contention Free Period (CFP). End devices can choose to communicate during CAP
or CFP. During CAP, devices transmit using Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) in a common channel. During CFP, end devices transmit in a dedicated time-frequency
slot. The CFP is divided in the time domain into seven multichannel slots, namely, Guaranteed Time
Slot (GTS). Each GTS is divided in the frequency domain into the number of available channels in
the channel page (usually 16). DSME supports both peer-to-peer and cluster tree topologies. Sim-
ilar to traditional IEEE 802.15.4, there are three device roles: Personal Area Network (PAN) coor-
dinator, regular coordinators, and child devices. Devices can transmit confirmed messages, where
the MAC layer retransmits frames in case of missed ACK frame. We summarize the configuration
parameters in Table 1 and introduce in the reminder of this section.

Network formation. The PAN coordinator is the device in charge of defining the superframe
structure. For this purpose, the device will transmit enhanced beacons periodically. The transmis-
sion of enhanced beacons always occurs during a beacon slot, and the period is a multiple of the
superframe duration. Devices that want to join the DSME network perform a scanning procedure
to detect enhanced beacons. When the scanning procedure succeeds, the joining device sends an
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Fig. 2. Overview of the DSME multisuperframe transmission resources.

Table 1. List of MAC Configuration Parameters for the DSME MAC

Parameter Description

macMinBE Minimum backoff exponent
macMaxBE Maximum backoff exponent
macMaxCsmaBackoff No. of access attempts before declaring channel failure
macMaxFrameRetries No. of frame retransmissions.
macSuperframeOrder (SO) Describes the length of the superframe slot
macMultisuperframeOrder (MO) Describes the length of the multisuperframe
macBeaconOrder (BO) Describes the length of the beacon interval
macCapReduction Opt. replace CAP with CFP in all superframes except first
macRxOnWhenIdle Opt. keep receiver on during CAP

association request to the coordinator. The association finishes when the coordinator acknowl-
edges with a positive association reply.

The DSME network can be extended natively by adding more coordinators. In such case, the
coordinator will emit enhanced beacons using the same period as the PAN coordinator but in a
different beacon slot offset. This ensures multiple coordinators can share the same area without
risk of beacon collisions. In the event of beacon collisions (i.e., two coordinators started emitting
beacons in the same slot offset), DSME provides a native mechanism to resolve collisions. To be able
to switch the common channel and PHY properties, the standard defines the PHY-OP-SWITCH
mechanism in which neighbor devices are instructed to switch to a different PHY configuration
on reception of a dedicated MAC command. This allows dynamic switching between data rates,
modulations, and frequency bands.

Superframe structure. Superframes merge into a multisuperframe structure as visualized in
Figure 2. DSME supports a CAP reduction mode in the multisuperframe structure
(macCapReduction), in which the CAP period is replaced by 8 CFP additional slots in all
superframes except the first. For example, a configuration with four superframes per multisuper-
frame exposes 28 GTS (448 unique time-frequency slots). With CAP reduction, the same structure
exposes 52 GTS (832 unique time-frequency slots).

DSME defines three parameters to describe the superframe structure, namely, Superframe
Order (SO), Multisuperframe Order (MO), and Beacon Order (BO) (compare Table 1). The su-
perframe order defines the slot duration as: aBaseSuperframeDuration · TSymbol · 2SO , where
aBaseSuperframeDuration = 60 symbols, as per standard. A small superframe order, which leads
to a shorter superframe duration, offers shorter latencies at the cost of higher energy consumption
and smaller payload. SO = 3 enables the transmission of standard 127 bytes 802.15.4 frames. The
multisuperframe order, together with the superframe order, define the number of superframes
per multisuperframe as 2(MO−SO ) . Higher multisuperframe orders lead to higher GTS resources
with the cost of higher latencies. Finally, the beacon order sets the beacon interval to 2(BO−MO )
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Table 2. Number of Available GTS with and without CAP Reduction; and Multisuperframe
Duration (Tmsf ) for Varying Multisuperframe Orders (MO), with a Superframe Order (SO)

of 3 and Symbol Time 1 ms

Multisuperframe

order (MO)

Number of GTS

(w/o CAP reduct.) [#]

Number of GTS

(w/CAP reduct.) [#]

Duration

Tms f [s]

3 7 7 7.68
4 14 22 15.36
5 28 52 30.72
6 56 112 61.44
7 112 232 122.88

multisuperframes. Higher beacon orders lead to higher beacon intervals, which extend the num-
ber of potential coordinator devices at the cost of longer association time. These three parameters
must comply with 0 ≤ SO ≤ MO ≤ BO ≤ 14. We summarize the number of available GTS and the
multisuperframe duration for different multisuperframe orders for the case SO=3 in Table 2.

CSMA/CA transmissions. On schedule of a CSMA/CA transmission, the MAC queues the packet
in the CAP queue and performs slotted CSMA/CA, aiming to avoid collisions while accessing
the common channel. The CSMA/CA algorithm requires four parameters displayed in the first
four rows in Table 1. On transmission the MAC aligns to the backoff period, which occurs every
20 symbols since the start of the CAP, and waits a random number of backoff periods between 0
and 2macMinBE. In case the duration of the remaining portion of the CAP is shorter than the required
backoff periods, the MAC waits for the next CAP period and continues its countdown accord-
ingly. The MAC then performs a series of clear channel assessments (at least two), each one at the
beginning of a backoff period. On failure, the MAC doubles the backoff period (below 2macMaxBE)
and the CSMA/CA algorithm retries until it succeeds or the MAC runs out of CSMA/CA attempts
(macMaxCsmaBackoff). When successfully accessing the channel, the MAC transmits the frame
and (optionally) waits for an ACK frame. If the MAC expects an ACK frame and does not receive
it, then the MAC repeats the CSMA/CA procedure until it runs out of CSMA/CA attempts or re-
transmissions (macMaxFrameRetries).

During CAP the MAC can transmit both unicast and broadcast frames. To minimize the energy
consumption on constrained devices, the MAC offers the macRxOnWhenIdle configuration param-
eter to turn off the receiver during CAP. This does not affect outgoing transmissions, but prevents
the MAC from receiving frames. To transmit frames to these constrained devices, the standard
defines the indirect transmission mechanism. A coordinator queues frames scheduled with indirect

transmission and appends the target address to the next beacon. A constrained device that finds its
address in the beacon polls the coordinator with a data request command and waits for an ACK
frame with the subsequent data frame.

GTS transmission. End devices that require communication with other devices during CAP need
to negotiate one or more GTS with the target device. DSME provides a native mechanism to ne-
gotiate slots—in contrast to Time Slotted Channel Hopping (TSCH). DSME GTS are unidirectional
(RX or TX) and only support unicast frames. When a device A wants to allocate one or several
slots with device B (coordinator or child), it sends a DSME-GTS request frame during CAP to de-
vice B. In case the device accepts the slot, it replies with a DSME-GTS response frame indicating
success. Finally, device A broadcasts a DSME-GTS notify frame to indicate the other node in reach
about the new slot allocation. Alternatively, a device can allocate a slot during the association pro-
cedure by sending a DSME Association Request command. On schedule of GTS transmission, the
MAC queues the packet in the CFP queue, which divides into multiple FIFO queues, one for each

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 69. Publication date: November 2022.



Towards Long-range Peer-to-peer Communication for the Constrained IoT 69:7

destination device among the allocated GTS resources. GTS transmissions support two channel
diversity modes, namely, channel adaptation and channel hopping. In channel adaptation mode, a
source device may allocate GTS in a single channel or in different channels based on the knowledge
of the channel quality. The source device requests channel quality information to a destination de-
vice using the DSME Link Report MAC command. Thereby devices agree on a different channel if
the channel quality is poor. In channel hopping mode, each GTS hops over a predefined sequence
of channels.

DSME supports message priority for GTS transmissions. On the occurrence of a valid GTS, the
MAC layer transmits first the frames with high priority and then regular frames, providing a class-
based service differentiation.

The 802.15.4e amendment introduces the group ACK feature, in which a coordinator receiving
data from multiple senders transmits one group ACK frame to all nodes in a single slot of a mul-
tisuperframe. The latest versions of the standard do not include this feature, but we discuss its
potential use cases for reducing time on air in Section 8.3.

3.2 LoRa Modulation

The LoRa modulation utilizes the chirp spread spectrum technique to transmit data over the wire-
less channel. This technique defines a linear frequency modulated symbol, namely, chirp, which
utilizes the entire allocated bandwidth spectrum. As a result, the LoRa signal is robust against in-
terference and multi-path fading and enables transmission ranges of kilometers, depending on the
PHY configuration. An interesting property of the LoRa modulation, namely, the capture effect,
allows to successfully decode a frame under collision if the power difference with the colliding
frames is large enough.

LoRa relies on two PHY parameters, namely, bandwidth and spreading factor, which define the
symbol duration. A higher symbol duration renders better receiver sensitivity, which increases
transmission range at the cost of higher time on air and lower PHY bit rate. A third parameter,
code rate, defines the redundancy bits encoded in the LoRa transmission. Similarly, the code rate
trades off transmission range with time on air.

The LoRa PHY frame consists of a preamble, used to synchronize the transceiver to the frame; an
optional LoRa PHY header, which encodes payload length, forward error correction code rate, and
the presence of a payload CRC at the end of the PHY packet; a payload, which contains the PSDU;
and an optional payload Cyclic Redundancy Check (CRC). The LoRa preamble defines a sync word
at the end, with the purpose of isolating networks of LoRa devices. For example, LoRaWAN sets
the sync word to 0×34 for public networks and 0×12 for private networks.

LoRa devices are subject to regional Sub-GHz regulations that impose restrictions on the trans-
mission of LoRa frames. These restrictions can be categorized in (i) duty cycle restrictions, in which
a transmitter may not exceed a maximum time over an observation period (usually 1% of time over
an hour); (ii) dwell time restrictions, in which the transceiver may not exceed a maximum time
on a single channel; and (iii) channel restriction, in which the device must switch channels on
consecutive transmissions or transmit over a minimum number of channels.

LoRa transceivers can decode signals below the noise floor, which renders energy detection
mechanisms such as RSSI impractical for detecting the presence of signals on the air. To circum-
vent this problem, common LoRa transceivers implement a Channel Activity Detection (CAD)
mechanism to note the presence of a LoRa preamble signal.

An interesting feature of LoRa transceivers, which has not been exploited by LoRaWAN,
is Frequency-hopping spread spectrum (FHSS) transmission. This feature allows to repeatedly
switch carrier frequencies during radio transmission, aiming to reduce interference and avoid
interception.
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Fig. 3. DSME-LoRa architecture overview.

4 DSME-LORA SYSTEM DESIGN

To operate LoRa radios below DSME, we define a DSME-LoRa adaptation , based on our original
work [4], that maps 802.15.4 MAC operations to LoRa operations. The adaptation layer performs
three tasks: (i) mapping of 802.15.4 channels to LoRa PHY channels; (ii) conversion of 802.15.4
frames to LoRa frames; (iii) implementation of 802.15.4 Clear Channel Assessment (CCA) on top
of the LoRa device. Figure 3 depicts the system architecture.

Channel mapping.The adaptation layer maps 802.15.4 channels to LoRa PHY channels. For this
work, we define a channel page with 16 LoRa channels (see Table 3) in the EU868 [17] region. Note
that the channel page may define more than 16 channels, as long as the channel information fits
in the MAC frames that control GTS allocation.

In the EU868 region the duty cycle of a band limits the time on air of a transmitting device to
a percentage within one-hour observation period. For 1% and 10% bands, the duty cycle limits the
cumulative time on air to 36 s and 360 s, respectively. For example, devices in a 1% band cannot
transmit a frame if the active send time exceeds 36 s during the last hour. Note that the duty cycle
is measured per band and not per channel. If a device transmits in multiple channels on a same
band, then the duty cycle of each channel adds up to the duty cycle of the band.

All channels utilize the same PHY configurations: spreading factor 7, bandwidth 125 kHz, and
code rate 4/5, which results in a PHY bit rate≈5.5 kbps and a symbol time of≈1 ms. We choose these
settings to provide a balanced tradeoff between transmission range, time on air, and throughput.

Note that different sets of LoRa PHY settings can be encoded using different channel pages.
Thereby, devices can agree on different channel pages, using the PHY-OP-SWITCH feature
Section 3.1, to increase transmission range or increase the channels for concurrent PHY commu-
nication. We will investigate the feasibility of this proposal in future work.

Defining LoRa PHY channels for other regions is viable, albeit challenging. We further discuss
this situation in Section 8.3.

We define one channel inside the g3 band (10% duty cycle) and 15 channels inside the g band (1%
duty cycle) with 200 kHz channel spacing. To relax duty cycle restrictions, we utilize the 10% band
channel for beacon transmissions, CAP channel, and GTS transmissions. The remaining channels
are used exclusively for GTS transmissions.

Since the proposed channels overlap with LoRaWAN channels, we define the synchronization
word of the preamble to 0 × 17 to avoid decoding of LoRaWAN frames. Furthermore, we include
the LoRa PHY header and payload CRC described in Section 3.2.

Frame mapping. On frame transmission, the adaptation layer calculates and appends a checksum
to the MAC frame and passes the frame to the LoRa transceiver. On frame reception, the layer
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Table 3. DSME-LoRa PHY Channel Definition, EU868 Frequency Band Information, and Purpose

Channel Band Frequency [MHz] Duty Cycle [%] Purpose

11–25 g 863.00–868.00 1 GTS transmission

26 g3 869.40–869.65 10
Beacon transmission,
CSMA/CA transmission,
GTS transmission

receives the LoRa frame from the transceiver and calculates the frame checksum. On success, the
layer dispatches the frame to the MAC layer. To transmit full 127 bytes 802.15.4 frames, we set the
superframe order to 3. The adaptation layer defines the MAC symbol time to 1 ms, which is in line
with the LoRa symbol time for the channel configuration. With this superframe order configuration
and symbol time, the superframe slot duration resolves to 0.48 s. Hence, the superframe duration
(16 superframe slots) is 7.68 s. We leave the multisuperframe and beacon order configuration to
the application.

CCA mapping. On CCA requests from the MAC layer, the adaptation layer maps to the LoRa
CAD feature, which detects the presence of a LoRa preamble on the air. On successful detection,
the layer reports channel busy to the MAC layer. Otherwise, the layer assumes the channel is free
and reports clear channel.

4.1 DSME-LoRa Implementation

The integration of DSME-LoRa on real hardware imposes a series of challenges: (i) long time on
air of LoRa requires a long superframe slot duration, which results in long beacon intervals. IoT
devices are prone to clock drift from cheap crystals, which increases the chances of desynchroniza-
tion between child devices and coordinators; (ii) common LoRa transceivers do not add a mech-
anism to timestamp frame reception, which is required to synchronize time between neighbor;
(iii) DSME accesses the transceiver based on interrupts during critical operations. This faces con-
current access with hardware serial peripheral buses (e.g., SPI) and limits the responsiveness on
real-time operating systems; (iv) common LoRa hardware platforms are constrained and have low
memory resources. This serves a common LoRaWAN stack. In contrast, DSME requires additional
memory due to the complexity of the MAC.

We integrate openDSME into the RIOT network stack (GNRC), which provides a generic mes-
saging interface (GNRC Netapi), a centralized packet buffer (GNRC Pktbuf), and a packet dispatch
registry (GNRC Netreg). RIOT provides a high-level platform timer API and a hardware abstraction
layer for 802.15.4 devices. We further extend openDSME to support the macRxOnWhenIdle mode
(Table 1) to turn the transceiver off during CAP and save energy when CAP is not used. Figure 4
presents the system integration of DSME-LoRa in RIOT and our contributions.

GNRC Netif DSME. Implements the GNRC network interface for DSME. This allows, via the
GNRC Netapi: (i) transmission of DSME frames; (ii) configuration of the DSME MAC (device role,
static slot allocation); (iii) scanning and association procedures. We use the DSME Adaptation
Layer, a convenience API provided by openDSME, to implement the MAC layer logic below the
network interface. The interface dispatches the incoming frames via the GNRC Netreg. To mini-
mize memory consumption, we utilize the callback extension of GNRC Netreg as an alternative
to the default IPC implementation. This saves an additional thread for reception, which heavily
reduces RAM utilization.

DSME Message. Implements the DSME Message interface (IDSMEMessage), which abstracts
the packet representation. We use the GNRC Pktbuf to implement the packet representation. This
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Fig. 4. DSME-LoRa integration into the networking subsystem of RIOT.

approach has advantages on memory consumption: (i) centralized storage prevents data duplica-
tion; (ii) the scattered packet representation of GNRC Pktbuf allows appending chunks of data to
a packet without memory reallocation; (iii) GNRC Pktbuf supports allocation with malloc. This
facilitates the operation of DSME in the same memory pool as openDSME, which bases on heap.

DSME Platform. Implements the DSME Platform interface (IDSMEPlatform), which defines
the platform abstraction layer of openDSME. The interface implements the access to the LoRa
transceiver on top of the 802.15.4 Radio HAL. It further implements the access to timer functional-
ities of the operating system. Thereby, we configure the high-level timer to use the real-time timer
peripheral, aiming to mitigate the effect of clock drift due to long beacon intervals. We delegate
the processing of transceiver interrupts and system timers to the RIOT scheduler to avoid concur-
rent access to the system bus between the transceiver and operating system. The implementation
reconfigures the symbol time of the MAC layer to 1 ms (LoRa) in compliance with Section 4.

LoRa Driver. Implements a 802.15.4 compatible driver for the LoRa transceiver (SX1272/SX1276).
The driver implements the three components of the DSME-LoRa Adaptation Layer (Section 4),
namely, channel mapping, frame mapping, and CCA mapping. To timestamp frame reception, we
calculate the time difference between the packet reception interrupt (RxDone) and the valid header
interrupt (ValidHeader). We use this time difference to calculate the exact reception timestamp of
the frame.

As a result of these design decisions, our DSME-LoRa implementation consumes ≈108 kB of
ROM and ≈12 kB of RAM on ARM Cortex-M0 CPU, which is enough for common LoRa hardware
platforms.

5 EVALUATION ON REAL HARDWARE

We evaluate the DSME-LoRa implementation (see Section 4.1) in a peer-to-peer topology with
source devices (TX-only) and sink devices (RX-only), as depicted in Figure 5. During our exper-
iments, each source device transmits data with exponentially distributed interarrival times to a
single sink. We vary the number of source devices (N) and the average transmission interval.

Our results include the transmission delay (time between packet schedule and successful recep-
tion), time on air, and energy consumption for transmissions during CAP and CFP. For the CAP,
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Fig. 5. Topology of a DSME-LoRa network with source and sink devices. One sink device can receive from
multiple sources.

Fig. 6. Deployment of LoRa platforms (B-L072z-lrwan1) on the FIT IoT-LAB testbed [3].

we further analyze the impact of CSMA/CA with CAD using different backoff parameters. We also
evaluate the impact of cross-traffic between coexistent DSME-LoRa and LoRaWAN networks and
the effect of interference on DSME-LoRa.

5.1 Experiment Setup

Testbed deployment. We conduct our experiments in the Saclay site of the FIT IoT-LAB testbed,
which supplies 25 LoRa boards (B-L072z-lrwan1). These are distributed in a 12 m by 12 m room, as
shown in Figure 6. The B-L072z-lrwan1 platform consists of an ARM Cortex-M0 CPU, which runs
at 32 MHz, provides 192 kB of ROM/20 kB of RAM, and contains a SX1276 LoRa transceiver. The
testbed contributes a serial_aggregator tool that aggregates all UART output of the deployment and
adds a timestamp. We add logging to our measurement firmware for packet schedule, transmission,
reception, and MAC queue lengths and use this information to calculate transmission delay, PRR,
and time on air.

Multisuperframe structure. We configure DSME to one superframe per multisuperframe, which
results in a multisuperframe duration of Tmsf =7.68 s. This configuration exposes 7 GTS over
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Fig. 7. Transmission delay for unconfirmed transmissions during the CAP (CSMA/CA) and CFP (GTS) with
a varying number (N) of source devices and transmission intervals.

16 channels, which enables 112 unique time-frequency slots. We use a beacon interval of two
multisuperframes, which results in a beacon period of 15.36 s.

Network topology. A variable number of source devices transmits data to three sink devices us-
ing direct communication (gateway-less). This mapping accommodates solely GTS transmissions
on the proposed multisuperframe configuration. During bootstrap, a random sink is assigned to
each source device. We use static allocation for GTS. With that, we imitate GTS allocation dur-
ing device association with the DSME Association Request command (see Section 3.1). We deploy
an extra device that operates as the PAN coordinator, which establishes the superframe structure
by transmitting enhanced beacons. Although any sink or source device may operate as the PAN
coordinator, we opt for this approach to simplify the deployment.

MAC configurations. If not mentioned otherwise, then we configure the CSMA/CA backoff
parameters to macMinBE=7, macMaxCsmaBackoff=5, macMaxBE=8 (see Table 1), which are close to
the maximum values, to cope with long time on air. Section 5.3 further compares these values to
802.15.4 default values. In agreement with the 802.15.4 standard, we set the maximum number of
retransmissions to macMaxFrameRetries=4. We utilize the channel hopping mode for GTS trans-
missions.

5.2 Data Transmission in CAP and CFP

Figure 7 shows the distribution of transmission delay for unconfirmed transmissions during CAP
(CSMA/CA) and CFP (GTS) for different network sizes and transmission interval. The intersections
between each curve and the right axis reflect the PRR.

CSMA/CA transmission. The transmission delay increases with the network size and lower
transmission intervals. In both cases, the on-air traffic increases, which leads to enhanced wireless
interference. As a result, the CCA procedure faces more often a busy channel, which increments
the number of CSMA/CA backoff periods per transmission. This effect increases the delay between
packet schedule and the actual transmission and causes a higher transmission delay. Similarly, the
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Fig. 8. Comparison of transmission delays for confirmed and unconfirmed transmissions during CAP
(CSMA/CA) and CFP (GTS) for 10 source devices and varying transmission intervals.

PRR decreases with the network size and lower transmission intervals. Multiple CCA failures en-
hance the probability of exceeding the maximum number of CCA retries. The MAC drops the
packet in such case, hence, it decreases the PRR. Note that due to inaccuracies of the CCA proce-
dure, the MAC transmits a fraction of packets even when the channel is busy, which decreases the
PRR marginally. We further analyze this effect in Section 5.3. Higher transmission delays increase
the CAP queue stress, since packets have to be buffered until they are actually sent. Hence, a frac-
tion of packet losses occur due to CAP queue overflows. The stressed scenario (TX interval=5 s)
reflects this situation, in which an increasing number of senders decrease the reception ratio.

GTS transmission. The transmission delay increases with a lower transmission interval during
CFP, but it does not vary with the network size. In contrast to the CSMA/CA scenario, each source
device transmits data during a dedicated time slot that repeats every Tmsf ≈7.68 s. In the advent
of packet queuing for a particular sink device, the last queued packet delays until the MAC trans-
mitted all preceding frames. As a consequence, a lower transmission interval (TX interval=5 s)
increases the transmission delay by increasing the average queue occupation—introducing MAC
queue stress. This situation explains a larger transmission delay in CSMA/CA than in GTS, most
notable in scenarios with TX interval=5 s/10 s, even with high backoff exponent configuration for
CSMA/CA. Note that the network size only affects the number of allocated time slots during one
multisuperframe. Consequently, the network size does not affect the transmission delay as long as
a sufficient number of GTS in the multisuperframe structure exist.

Effect of retransmissions. Figure 8 compares the delay and PRR for confirmed and unconfirmed
transmissions during CAP and CFP. Confirmed frames under transmission stay in the MAC queue
until the reception of a valid ACK frame. In case of packet loss, the MAC retransmits a pending
frame until reception of the ACK frame or running out of retransmission attempts. Following
our preceding measurements, we vary transmission intervals in a network of 10 source devices.
Confirmed transmissions during CAP reveal a higher transmission delay in relaxed scenarios (TX
interval=10 s/20 s), i.e., 90% of confirmed packets finish within 40 s, whereas the same amount of
unconfirmed packets finish in less than 20 s. Therefore, the reception ratio increases from 95% to
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100% with confirmed traffic. In the stressed scenario (TX interval=5 s), the transmission delay of the
confirmed scenario increases as well, while the PRR decreases in comparison to the unconfirmed
scenario. Two causes are worth stressing: (i) retransmissions increase the on-air traffic, which leads
to collisions and a high number of CCA failures; (ii) frames in retransmit occupy the MAC queue
for a longer time and are dropped occasionally due to CAP queue overflow.

In the CFP, confirmed packets improve the PRR by only ≈0.5% to achieve 100% success. Simi-
lar to the CSMA/CA scenario, frame retransmissions increase the probability of packet reception,
however, since GTS transmissions are exclusive, retransmits are barely required. Therefore, the
contribution of frame retransmissions to MAC queue stress is negligible. Only a few retransmit-
ted frames slightly increase the transmission delay. This effect is notable in the scenario with TX
interval=10 s. In contrast to the stressed CSMA/CA scenario, the queue load in the stressed GTS
scenario (TX interval=5 s) with confirmed transmissions is similar to unconfirmed transmissions.
Hence, the PRR does not decrease any further.

5.3 Effect of CAD under Different CSMA/CA Configurations

Effect on collisions. We evaluate the collision avoidance capabilities of the CAD feature for
transmissions during the CAP and compare to the ALOHA protocol, i.e., randomized delay before
transmissions. Thereby, we utilize two timing parameters sets for CSMA/CA with CAP and the
initial ALOHA backoff.

(1) High BE: our default choice (compare Section 5.1) with macMinBE=7,
macMaxCsmaBackoff=5, macMaxBE=8.

(2) Standard BE: 802.15.4e standard values (for radios that operate in the 2.4 GHz band) with
macMinBE=3, macMaxCsmaBackoff=4, macMaxBE=5.

Figure 9 displays the fraction of packets that face a clear channel, collide, are dropped due to
maximum number of CSMA/CA reattempts or queue overflow. Naturally, the latter options do
not occur using ALOHA. In the ALOHA scenario (Figure 9, left), the results show that collisions
increase with a lower transmission interval. Due to higher traffic on air, the chances of packet
collision increase up to 38% with 10 nodes and TX interval=5 s in the standard BE scenario (Figure 9,
bottom left). Note that scenarios with standard BE CSMA/CA settings show higher collision rates
than scenarios with high BE settings (Figure 9, left bottom vs. top). The higher backoff exponent
increases the initial TX delay, hence, the average transmission interval, and thereby reduces the
probability of collisions. The number of transmitted packets stays constant (100%) in all ALOHA
scenarios, regardless of interference or busy channel. This is because the MAC always assumes a
free channel at the end of the backoff period and unconditionally transmits the frame.

The number of collisions in the CSMA/CA CAD scenario (Figure 9, right), is smaller than in the
ALOHA scenario and increases at a lower rate with a lower transmission interval. In contrast to
ALOHA, the number of transmitted packets decreases with a lower transmission interval. This is
the positive effect of channel sensing indicated by CCA failures, which avoids sending during on-
going transmissions on the channel. Packets that are delayed due to CCA remain queued and the
MAC drops a pending frame if CSMA/CA runs out of retries. This decreases the number of trans-
mitted frames in a stressful scenario (CSMA/CA standard BE, TX interval=5 s). It is worth noting
that CAD is affected by inaccuracies; it detects a clear channel if two nodes start CSMA/CA about
simultaneously. As a result, a fraction of packets collides despite CCA. Similar to the ALOHA sce-
nario, high BE CSMA/CA settings trigger fewer collisions than standard BE settings. A reduction
in transmission rate due to higher backoff delays relaxes the channel, though, a negative side ef-
fect is additional CAP queue load, which increases packet losses due to occasional queue overflows
(CSMA/CA high BE, TX interval=5 s).
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Fig. 9. Proportion of CAP packets that face a clear channel on transmission, collide, or are dropped by
CSMA/CA. Results are separated into high BE and standard BE CSMA/CA configurations with and with-
out CAD for 10 source devices and varying transmission intervals.

Effect on transmission delay. The results in Figure 10 show that the transmission delay in the
CSMA/CA scenario increases with decreasing TX intervals. Increased channel access failures with
CSMA/CA delay the transmissions (until CCA reports clear channel). Hence, the average trans-
mission delay increases. Increasing TX intervals with ALOHA do not affect the transmission delay,
since sending is independent of the channel state. ALOHA therefore suffers from wireless interfer-
ence. In all cases, CSMA/CA leads to a higher PRR than ALOHA transmission. Although CSMA/CA
with CAD reduces the proportion of transmitted packets, the number of non-transmitted packets
(which avoided a collision) is smaller than collisions upfront. As a result, the PRR increases. Scenar-
ios with high BE CSMA/CA settings reveal higher packet reception ratios, as a result of reduced
collisions and higher transmission delay as a result of higher backoff delay.

Effect on retransmissions.Figure 11 analyzes the effect of using CAD when enabling confirmable
traffic and retransmissions. We compare the PRR and the average number of retransmissions per
packet (Figure 11(b)) for both the CSMA/CA with CAD and ALOHA scenarios. The PRR decreases
with higher TX intervals and CSMA/CA CAD measurements outperform ALOHA. The effect is
most notable in the stressed scenario (TX interval=5 s), where the difference amounts to ≈8%.
Retransmissions remain rare with CSMA/CA, which indicates that losses are mainly caused by
avoided transmissions in stressed cases. Nevertheless, CSMA/CA outperforms ALOHA in terms
of reception ratio. In contrast, nodes retransmit every packet up to 1.5× (on average) using ALOHA,
without improving packet reception. This useless amount of retransmissions demonstrates the ad-
vantage of CSMA/CA with CAD.

5.4 Time on Air and Duty Cycle Compliance

Transmission time with LoRa radios is limited by band regulations. We analyze the on-air time
with respect to duty-cycle compliance. As depicted in Section 5.1, we set up topologies in which a
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Fig. 10. Comparison of transmission delays between CAP transmissions with CSMA/CA CAD and
ALOHA for 10 source devices, with varying transmission intervals and CSMA/CA backoff exponent (BE)
configurations.

Fig. 11. Packet reception ratio (left) and average retransmissions per frame (right) for 15 source devices and
varying transmission intervals.

variable number of source devices sends data to three sink devices. The assignment is uniformly
random. Sink devices, in turn, reply with an ACK to every incoming packet. Note that a data
frame contains 27 bytes of data, whereas the ACK frame contains only 5 bytes. Due to the LoRa
PHY frame overhead, however, the ACK packet takes ≈31 ms on air, which is around half of the
data frame (≈67 ms). We set up mostly stressed TX intervals to foster duty cycle violations and
present our results of the time on air per node in Figure 12. Thereby, the dashed gray line indicates
the maximum on air time to comply with a 1% band occupation during CFP. For the CAP, we
utilize a 10% of the band (see Section 4), which is not visible on this scale.

CSMA/CA transmission. The time on air increases with a lower transmission interval as a result
of a higher transmission rate on the MAC (Figure 12(a), top left to right). For the N=5 case, the time
almost doubles from ≈20 s to 40 s with half the TX interval. Note that we apply a 10% band to the
CAP, hence, on-air times of up to 360 s per node do comply with duty cycle restrictions.
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Fig. 12. Time on air of data frames on source devices (left) and ACK frames on sink devices (right) compared
to 1% band limitations (gray line). Frames are sent in CAP (CSMA/CA) or CFP (GTS), and we vary the number
of source devices (N) and transmission intervals.

Our results further show that the average time on air of source devices decreases in larger
networks (N increases). The effect is most notable in the scenario with TX interval=5 s. In that
scenario, CCA fails more often due to higher on-air traffic, which persuades the MAC to drop
a fraction of data frames, either due to exceeded CSMA/CA attempts or overflowed CAP queue
(see Section 5.3). The case with N=15 source devices does not vary on air time with varying TX
intervals due to these MAC drops.

In the case of sink devices, the time on air increases with a lower transmission interval, similarly
to source devices. In contrast, though, the time on air also increases with the network size. ACK
packets are sent in response to every incoming source device frame and do not utilize CSMA/CA.
Due to our topology choice, a sink device has to return multiple ACK packets to satisfy all its
assigned source devices. Consequently, a higher number of source devices leads to a higher ACK
frame transmission rate per sink device, which increases the time on air up to 60 s for scenarios
with N=15 source devices. This is still in line with 10% restrictions. Note that the random source-
sink assignment leads to a different number of source devices per sink on each scenario, which
introduces variations between time on air measurements across sink devices.

Sink devices send multiple ACK packets back-to-back, contrasting a “simultaneous” channel
access of source devices that introduced MAC dropping. Overall, increasing transmission rates
have a less severe impact on node duty cycles than increasing number of nodes that try to access
the medium during the same time period.

GTS transmission. The average time on air of source devices increases with a lower TX inter-
val, which is in agreement with CSMA/CA transmissions (Figure 12(a), bottom left to right). Our
CFP assignment with one GTS per source-sink link, however, limits the effective TX interval to
Tmsf =7.68 s in our multisuperframe configuration as described in Section 5.1. Note that this config-
uration preserves duty cycle compliance natively. Sending a 67 ms long packet every 7.68 s results
in 31.4 s active send time per hour, which is below the 1% regulation mark of 36 s per device and
hour. Conversely, we intentionally chose a very stressful measurement setup with TX interval=5 s.

Similar to the relaxed CSMA/CA scenario, the average time on air of sink devices increases with
a lower TX interval (Figure 12(b), bottom left to right) due to an increased frame rate. Increasing the
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Fig. 13. Comparison of PRR for 10 DSME-LoRa source devices with and without cross-traffic from a
LoRaWAN network with 10 class A devices. All devices transmit unconfirmed frames with 16 bytes pay-
load and uniformly distributed interarrival times between 7 and 13 s. DSME-LoRa devices transmit during
CFP (GTS).

network size, in contrast to CSMA/CA, further increases the on-air times of sink devices. Observe
that the time on air exceeds 1% of duty cycle in scenarios with N=15. The reasons for this are
threefold: (i) Due to our topology choice, each sink device has to confirm five source packets on
average in the N=15 scenario. This amplification burdens the link budget of a single sink device.
Hence, we deliberately violate the duty cycle regulations by our experiment setup. (ii) Sink devices
only send ACK frames back by back and without CSMA/CA. Hence, sink devices transmit 100%
of the scheduled ACK frames. (iii) GTS transmissions utilize guaranteed resources, which increases
the reception ratio and decreases losses in comparison to CSMA/CA transmissions. As a result,
the number of transmitted ACK frames is in line with the number of transmitted data frames,
regardless of the network size.

5.5 Coexistence with LoRaWAN

The proposed DSME-LoRa PHY channels overlap with channels of LoRaWAN networks. There-
fore, we are interested in the effects of LoRaWAN cross-traffic in DSME-LoRa networks. For this
analysis, we focus only on cross-traffic between GTS transmissions and LoRaWAN traffic for two
reasons: (i) The common CAP channel does not overlap with standard LoRaWAN uplink channels.
(ii) LoRaWAN downlink traffic is typically transmitted using a higher spreading factor and thereby
does not collide with DSME-LoRa packets.

For the evaluation, we deploy DSME-LoRa and LoRaWAN networks simultaneously and mea-
sure the PRR of the DSME-LoRa network. We compare these values against the same DSME net-
work without cross-traffic.

For the LoRaWAN network, we set up 10 nodes with class A transmissions and DR5 (spread-
ing factor 7, bandwidth 125 kHz). The deployment uses a single 8-channel TTN [11] LoRaWAN
gateway, available in the testbed. The DSME-LoRa network consists of 10 source devices with the
topology and configuration in agreement with Section 5.1. All devices transmit 16 bytes payload
using unconfirmed transmissions and uniformly distributed interarrival times between 7 and 13 s.

Figure 13 shows the PRR of the isolated DSME-LoRa network (baseline) and the network with
LoRaWAN cross-traffic. With DSME cross-traffic, the PRR reduces≈0.7%. From all available DSME-
LoRa channels, only seven overlap with TTN LoRaWAN channels, which means 56.25% of trans-
missions are collision-free. A fraction of the remaining packets is transmitted concurrently with
DSME-LoRa transmissions, which reflect the PRR reduction. The LoRaWAN traffic does not col-
lide with DSME beacons and, therefore, device desynchronization as a result of collision between
LoRaWAN packets and DSME-LoRa beacons is negligible. Even though LoRaWAN traffic degrades
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Fig. 14. Evolution of PRR for three replicas of a DSME-LoRa deployment with 10 source devices, unconfirmed
GTS transmissions, and TX interval=10 s, under heavy interference on the common channel.

PRR as a result of concurrent transmissions on shared channels, the cross-traffic does not prevent
normal operation of the DSME-LoRa network. We conclude that DSME-LoRa traffic is compatible
with standard LoRaWAN uplink traffic.

5.6 Effect of Interference in Common Channel

Section 5.5 confirmed that DSME-LoRa networks tolerate channel interference in GTS channels.
However, the results do not reflect tolerance to noise in the common channel used for CAP and
beacon transmissions. While common LoRaWAN deployments in the EU868 region do not trans-
mit in the 10% band (CAP channel) using the same PHY settings as DSME-LoRa, the LoRaWAN
network server does not prevent the configuration of a downlink channel using spreading factor 7,
which may cause LoRaWAN frames to collide with DSME-LoRa frames. Since synchronization to
the DSME superframe structure relies on beacons, we evaluate whether DSME-LoRa can operate
under noise in the common channel. We focus only on GTS transmission, because the effect of
noise during CSMA/CA transmissions has already been analyzed in Section 5.2.

We generate a harsh environment by deploying five jammer devices that send 127 bytes payload
data in the common channel with uniformly distributed interarrival times between 1 s and 6 s, next
to the DSME-LoRa network with 10 source devices. The interarrival time of packets and the MAC
configurations of the DSME-LoRa network are identical to the network in Section 5.5.

Figure 14 shows the moving average PRR over time for three replicas (R1, R2, and R3). The PRR
of all replicas oscillates around 92% before T=100 s. After T=100 s, the PRR in R3 reduces to ≈50%
and does not recover. Similarly, around T=270 s the PRR in R2 drops to ≈89%. To understand these
results, observe that the common channel is included as one of the transmission channels in CFP.
Therefore, GTS transmissions in the common channel are likely to collide with traffic from the
jammers. Assuming 1

16 of GTS vulnerable transmissions (i.e., one channel gets jammed), around
94% of transmission are collision-free. This reflects the lower average PRR before T=100 s. The PRR
drops in R2 and R3 are caused by the desynchronization of two sink devices and a source device,
respectively, as a result of beacon loss. When the MAC misses a number of consecutive beacons (4
by default), the device disassociates and ignores all transmission requests and GTS reception slots.
Therefore, incoming and outgoing packets are simply discarded.

To summarize, interference on a single channel reduces the efficiency of GTS transmissions
but does not prevent normal operation. Interference on the common channel, however, increases
beacon loss, which desynchronizes devices from coordinators. While raising the threshold of con-
secutive missed beacons can delay desynchronization on sporadic interference, it cannot solve the
problem. Additionally, long time on air and long range of LoRa frames make wireless attacks plau-
sible, in which an attacker blocks beacon reception through channel jamming. We discuss potential
solutions to this problem in Section 8.5.
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Fig. 15. Power consumption during one beacon interval with two multisuperframes separated into
CSMA/CA transmissions (top), GTS transmissions with transceiver off during CAP (middle), and GTS re-
ceptions with transceiver off during CAP (bottom).

5.7 Energy Consumption

We evaluate the power consumption on the target board using a digital multimeter (Keithley
DMM7510 7 1/2). Therefore, we sample the current consumption at 100 kHz and provide the board
with an externally stabilized voltage supply. Our analyses are separated into passive and active
consumption. Passive consumption includes the maintenance of the superframe structure without
data transmission. Active consumption, in contrast, includes the transmission and reception of
data and ACK frames in different superframe periods. Hence, the total consumption of a node con-
sists of both passive and active components. Figure 15 represents the passive power consumption
over time during one beacon interval and three traffic options. It is noteworthy, though, that we
exemplarily include active TX/RX spikes in the plot for presentative reasons.

(1) S1 enables transmission during CAP. This requires both sender and receiver to enable the
transceiver during that period (Figure 15, top).

(2) S2 disables the CAP to save power and represents the case for sending data during one GTS
(Figure 15, middle).

(3) S3 is similar to (2), however, it displays data reception during one GTS (Figure 15, bottom).

Figure 16 represents active power consumption for the sender and receiver of a frame with
CSMA/CA (used in the CAP) as well as without channel sensing (in the CFP). Table 4 integrates
the power over dedicated intervals and presents the energy consumption for passive (top part)
and active (bottom part) actions. In the remainder of this section, we will first analyze passive
and active components separately. We then evaluate the total energy consumption and present
our results in Table 5. In all measurement configurations, we set the transmission interval to TX
interval=20 s and the payload size to 16 bytes.

Passive consumption (Table 4 top). During Beacon Slot (BS)0 the MAC turns the transceiver on
for the duration of the beacon slot (0.48 s) to receive the beacon from its coordinator. The energy for
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Fig. 16. Power consumption for transmission and reception of one packet with CSMA/CA (left) and in a
guaranteed time slot (right).

Table 4. Energy Consumption for Each Superframe Period

Period State Additional Description Energy [mJ]

P
a

ss
iv

e

BS
RX Beacon synchronization 18.28
RX off Inactive beacon slot 0.08

CAP
RX idle macRxOnWhenIdle=1 146.12
RX off macRxOnWhenIdle=0 0.50

CFP
TX idle Single GTS allocation 2.20
RX idle Single GTS allocation 19.31
RX off No GTS allocation 0.69

A
ct

iv
e CAP

TX
Single CSMA/CA TX

12.04
RX 6.44

CFP
TX

Single GTS TX
11.27

RX 6.44
Passive (top) components relate the maintenance of the superframe structure under varying
transmissions options. Active (bottom) components relate to the actual data transmission.
State relates to the following components idle – device is ready for operation w/o ongoing
transmissions; off – device is not operable to save energy; TX/RX – transmission/reception
of frames.

beacon synchronization is 18.28 mJ for CPU processing, listening, and receiving (RX). During BS1

the MAC repeats the superframe structure and begins with a new inactive beacon slot, reserved
for beacon collision avoidance (see Section 3.1). The MAC keeps the transceiver off (RX off) during
that time and the energy consumption reduces to 0.08 mJ.

The MAC switches to the CAP after a beacon slot. In the S1 scenario (Figure 15, top), the
transceiver stays idle listening during CAP00 for 3.84 s (RX idle, macRxOnWhenIdle=1), which con-
sumes 146.12 mJ. This high consumption shows the need for battery powered devices to turn the
transceiver off during CAP.

The S2 scenario (Figure, 15 middle) reflects that the transceiver is turned off (RX off, macRx-

OnWhenIdle=0) during CAP10, as it reduces the consumption during CAP to 0.5 mJ, only for
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Table 5. Passive and Active Energy Consumption per Beacon Interval [mJ], for the CSMA/CA
Scenario S1 and both GTS Scenarios S2 & S3

S1 S2 S3

Period Energy [mJ] Prop. [%] Energy [mJ] Prop. [%] Energy [mJ] Prop. [%]
BS 18.36 5.68 18.36 45.15 18.36 28.74
CAP

passive 292.23 90.45 0.99 2.43 0.99 1.55
active 11.12 3.44 0.00 0.00 0.00 0.00

CFP
passive 1.38 0.43 4.40 10.82 38.62 60.45
active 0.00 0.00 16.91 41.59 5.92 9.27

Total 323.09 100 40.66 100 63.89 100

maintenance purposes (i.e., timers, interrupts, etc.). This makes the node, however, unavailable for
packet reception during that period. The CFP follows the CAP (T=4.32 s) and the MAC switches
to slot mode. Without a GTS allocation, the transceiver stays off (RX off) and a system wake-up
for internal housekeeping requires 0.69 mJ, which is similarly low as the sleep mode of the CAP.
In the presence of an allocated GTS TX slot in the CFP, the MAC turns the transceiver on (TX
idle) before the GTS to prepare the next transmission. An empty transmission queue triggers the
immediate shutdown of the transceiver to save energy. This situation reflects the power peak in
CFP10 (T=4.32), which consumes no more than 2.20 mJ and can be mitigated by slot deallocation.
An actual GTS transmission is visible in CFP11.

Scenario S3 (Figure 15, bottom) presents the corresponding consumption in CFP20 to receive dur-
ing one GTS. Here, the MAC enables the transceiver during one full GTS duration (RX idle), which
requires 19.31 mJ and provides a frugal alternative to the CAP receiver. An actual GTS reception
on top of the baseline is displayed in CFP21.

Active consumption (Table 4 bottom). At the beginning of CSMA/CA transmission (Figure 16,
top left), the MAC waits for the duration of the backoff period and performs three consecutive
CCA measures, which consumes 0.73 mJ. On clear channel, the transceiver loads the frame and
performs the frame transmission (TX), which consumes 9.07 mJ, followed by ACK frame reception
at 2.23 mJ. In total, this makes ≈12.04 mJ for CSMA/CA transmission during CAP.

The CSMA/CA receiver (Figure 16, bottom left) consumes 2.75 mJ for the bare frame; however,
awaiting the turnaround time and sending the ACK back consumes additional 3.69 mJ. Hence, pure
receiving (RX) requires 6.44 mJ, which appears low compared to transmission. It, however, requires
an active CAP, which consumes >20 times more energy (see Table 4).

On transmission during GTS (Figure 16, top right), the MAC loads the frame into the transceiver
buffer without a preceding CCA, immediately transmits, and receives an ACK. This total con-
sumption of 11.27 mJ outperforms the CSMA/CA sender slightly. Note that the device turns off
the transceiver if the MAC queue is empty, which further reduces the passive CFP consumption
occasionally.

Similar to the reception during CSMA/CA, the reception during GTS (Figure 16, bottom right)
turns the receiver on for the duration of the frame, delays, and transmits the ACK frame, which
leads to the same consumption. In contrast, however, GTS receivers can turn the transceiver off
during CAP.

Total energy consumption. Table 5 presents the total energy consumption and proportions
during BS, CAP, and CFP, for the three scenarios in Figure 15. We normalize the consumption to
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Table 6. List of Variables Used in Our Model for DSME-LoRa

Variable Description

L(t ) Packets in queue at time t
Tn Time at the end of the slot n
Ln Queue length at Tn , equivalent to L(Tn )
S Elapsed time since the end of the last slot (0 ≤ S < Tmsf )
N (t , s ) Number of packets scheduled between t and t + s
λ Transmission schedule rate
Tmsf Duration of a multisuperframe
ρ System utilization, defined as λ ·Tmsf

D Number of neighboring devices
Ld (t ) Number of queued packets with destination to neighbor d ∈ [0,D)

by definition, L(t ) =
∑D−1

d=0 Ld (t )

one beacon interval and present average values from 10 measurements. Results are separated into
passive and active operations in alignment with the preceding micro analysis. All three scenarios,
unsurprisingly, consume the same amount of energy (18.36 mJ) for maintaining the beacon slot.
In the S1 scenarios, over 90% of the consumed energy accounts to passive CAP consumption—for
keeping the radio on—whereas only ≈3.5 % is used for sending. Since the CFP is not actively used,
the overhead remains small (<0.5%). We also conducted measurements at the receiver side in this
scenario, but the variation remains negligible. As the results do not contribute to additional in-
sights, we excluded these experiments. The overall consumption for scenarios S2 and S3 behaves
similar. The CAP remains unused to save energy. Thus, only the passive component consumes 1 mJ
(<2.5%). The GTS scenarios save about 290 mJ over S1. The main proportion is spent in the CFP. Ac-
tive sending in a GTS (≈17 mJ) is more expensive than receiving (≈6 mJ). Conversely, turning on the
transceiver for a GTS duration (≈39 mJ) consumes four times more energy than scheduling a trans-
mission slot without sending (≈11 mJ). In total, this leads to a 50% higher consumption of the GTS
receiver scenario S3. Comparing S1 to S2 and S3, a total consumption of 323.09 mJ reveals a notable
overhead to the GTS alternatives, which require five to eight times less energy. Stress during CAP
(see Section 5.3) can further worsen the energy excess for CSMA/CA reattempts and retransmits.
Conversely, S1 scenarios (i) are required to associate slots in S2 and S3 in a real-world deployment
and (ii) enable sporadic transmissions without association overhead. In practice, however, mixed
scenarios can build a compromise to facilitate moderate consumption in flexible deployments.

6 ANALYTICAL STOCHASTIC MODEL

An important measure for the feasibility of our solution is its performance under continuous net-
work load. To evaluate this, we introduce an analytical stochastic model, which allows to calculate
the stationary probability distributions of the MAC queue length at an arbitrary time and for trans-
missions during CFP (GTS). Our symbols and nomenclature are summarized in Table 6.

The temporal evolution of the MAC queue at a DSME-LoRa device is visualized in Figure 17.
Packets arrive randomly over time and are added to the queue. At the end of an arbitrary slot
Tn , packets are transmitted and removed from the queue. Correspondingly, the number of queue
entries at the end of slot n is Ln , while N (Tn , S ) packets are added in the time span S afterTn . In a
homogeneous process, N (Tn , S ) is proportional to S .

6.1 A Markov Queuing Process

We model our DSME-LoRa transmission system as a simple Markov queuing process, For this, we
make the following simplifying assumptions:
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Fig. 17. Qualitative evolution of the MAC queue over time: Occupation grows on packet scheduling events
(green) and reduces at slot occurrences (purple).

Fig. 18. Embedded Markov chain: The queue occupation Li remains constant between slots if only one packet
arrives (k1). It increases by i − 1 for ki packet arrivals and decreases for k0.

(1) packets arrive independently
(2) exponentially distributed interarrival times between scheduled packets with ρ < 1 (λ
< 1

Tmsf
)

(3) MAC queue has unlimited capacity
(4) unacknowledged transmissions and 100% packet reception ratio
(5) transmission time on air is neglected.

We start by considering transfer to only one neighbor (D = 1). Thereafter, we extend the model
under moderate conditions to scenarios withD > 1. We further analyze this situation in Section 6.4.

Our Markov queuing model is shown in Figure 18. The state of the queue Li is reduced by one
at the end of every time slot. Packets arrive randomly during any time interval s in the queue of
the system and follow a Poisson process with parameter λs . For a complete multisuperframe time,
let us denote

ki = P {N (Tn ,Tmsf ) = i} = ρi · e−ρ

i!

the probability of i packets arriving during one multisuperframe (ρ = λ ·Tmsf denotes the arrival
intensity, i.e., system utilization). Then the transition arcs of the Markov matrix P are defined by:

P[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k0 if j-i= -1 (1)

k0 + k1 if i=0, j=0 (2)

kj−i+1 if j ≥ i (3)

0 otherwise. (4)

The probability of a queue reduction corresponds to no packet arrival (Equation (1)), of a growth
by (j-i) to j-i+1 packet arrivals (Equation (3)), and a constant initial condition to either none or one
packet arriving (Equation (2)).
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6.2 Queue Length

For calculating the actual queue occupation, we note that the number of queued packets at an
arbitrary time is L(t ) = Ln + N (t − S, S ), as seen in Figure 17.

Consequently, the distribution of queue length is given as:

P {L(t ) = i} = P {Ln + N (t − S, S ) = i}

=

i∑
j=0

P {Ln = i − j,N (t − S, S ) = j}

=

i∑
j=0

P {Ln = i − j} · P {N (t − S, S ) = j}. (5)

We first derive a result for P {N (t −S, S ) = i}. Note that P {N (t −S, S ) = i | S = s} is a Poissonian
with parameter (λ · s ) and S is uniform in (0,Tmsf ). Therefore, we can calculate P {N (t − S, S ) = j}
via the law of total probability:

P {N (t − S, S ) = j} =
∫ ∞

0
P {N (t − S, S ) = j |S = s} · P {S = s}ds

=

∫ Tmsf

0

(λs ) je−λs

j!
· 1

Tmsf
ds =

1

ρ
· Γ(j + 1, ρ), (6)

where Γ(j,x ) =

∫ x

0
t j−1e−t∫ ∞

0
t j−1e−t

is the regularized lower incomplete gamma function.

For the calculation of P (Ln = i ), observe that Li , ∀i ∈ [0,∞) is a Markov chain (Figure 18), for
which we search the stationary distribution. We also observe that the Markov chain is ergodic
(positive recurrent and aperiodic). Thus, the stationary distribution πi = limn→∞ P (Ln = i ) exists
and complies with PT �π = �π . The calculation of a closed-form analytical solution for πi is not
trivial. We describe a detailed numeric procedure to calculate the vector in Section A.

Combining the stationary distribution of the Markov chain and Equation (6) into Equation (5)
leads to the distribution of queue length:

P {L(t ) = i} =
i∑

j=0

πi−j
Γ(j + 1, ρ)

ρ
.

It is possible to calculate the average queue length directly. Observe that E (L(t )) = E (Ln ) +

E (N (S )), where E (Ln ) =
∑∞

i=0 iπi and E (N (S )) =
∫ Tmsf

0
ρ 1

Tmsf
dt =

ρ

2 .

Therefore,

E (L(t )) =
∞∑

i=0

iπi +
ρ

2
. (7)

6.3 Transmission Delay

We now calculate the distribution of transmission delay in multiples ofTmsf from the distribution
of queue length:

P {W ≤ nTmsf } = P {L(t ) ≤ n − 1}.
As an example, the fraction of packets with transmission delay less than one multisuperframe

is P {L(t ) ≤ 0} = π0
1−e−ρ

ρ
.

Little’s Law [41] L = λW calculates the average number of queued items (L) using the arrival
rate (λ) and average waiting time W. We use the result to calculate the average transmission delay
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directly:

W =
1

λ
E (L(t )) =

1

λ
�
�

∞∑
i=0

iπi +
ρ

2
�
	
. (8)

6.4 Allocation of Multiple GTS

So far, the model assumes only one neighbor device (D = 1) and the allocation of only one slot.
The model, however, is still valid for D > 1 if each target device allocates only one slot per multisu-
perframe. In such case, the MAC utilizes the queue as multiple independent FIFO sub-queues (Ld ).
As a result, the model is valid for each sub-queue and the distribution of the total queue length is:

P {L(t ) = i} = P
⎧⎪⎨⎪⎩

D−1∑
d=0

Ld (t ) = i
⎫⎪⎬⎪⎭
.

Note that the average queue length is the sum of all average sub-queue length and the average
transmission delay the fraction of the average queue length and the total schedule rate (Little
equation).

The proposed formulas, however, cease to hold if the MAC allocates more than one slot to the
same neighbor. Nevertheless, D = 1 sets the worst-case scenario for transmission delay and queue
length over these scenarios.

6.5 Validation of the Model

We validate the model accuracy for the distribution of queue length and transmission delay. We
chose the GTS transmission scenario with the highest rate of transmitted packets, namely, with
15 source devices, minimize the effect of the transient queue. We do not include the scenario with
TX interval=5 s, because it is shorter than the multisuperframe duration (7.68 s). In such case the
model does not converge. For the calculation of theoretical results, we clipped the Markov matrix
to 100 elements.

In Figure 19, we validate our model by comparing to experimental results (see Section 5).
Figure 19(a) compares the probability mass function of the queue length at packet schedule be-
tween the results of the experiments and the model. The model predicts the distribution of queue
length with more than 99.99% of accuracy. In the relaxed scenario, the probability of more than
five elements in the queue is 6.17 · 10−5, which is consistent with the observation that the queue
does not exceed this value. Similarly, the model predicts the transmission delay with an accuracy
of 99.99%, as seen in Figure 19(b).

The small variations between the experiment results and the model are due to the effect of the
transient queue and a small fraction of packet losses. The former effect mitigates either with a
bigger network size or with a longer experiment run.

7 SIMULATION STUDY: ASSESSMENT OF LARGE-SCALE ENSEMBLES

We proceed to evaluate the performance of DSME-LoRa for a larger networks using the INET [28]/

OMNeT++ [63] based on our simulation environment [4]. The simulator utilizes the radio module
of FLoRa [60] and the OMNeT++ adaptation of openDSME [31], namely, inet-dsme, for the MAC
implementation. We extend inet-dsme to enable DSME communication over the LoRa radio, as
shown in Figure 20. We reuse the traffic generator application of inet-dsme, namely, PRRTrafGen,
which bases on the IpvxTrafGen traffic generator module of INET. We utilize the nextHop module
of INET to resolve L3 address from packets into the destination MAC address.
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Fig. 19. Validation of the analytical stochastic model with experimental results. Comparison of distributions
of the queue length and transmission delay for varying transmission intervals.

Fig. 20. DSME-LoRa simulation environment and our contribution.

7.1 Validation of the Simulation Environment

To validate our simulator, we first compare simulation results with real-world measurements on
hardware (see Section 5). In particular, Figure 21 compares simulation results and our experiments
conducted in Section 5.2. In CSMA/CA transmissions, a fraction of collided packets are successfully
decoded (capture effect). The fraction of packets varies between the simulation and the experiment,
which lead to a different number of retransmissions and dropped frames by the MAC. In GTS
transmissions, the collision-free transmission renders high reception ratio for MAC transmissions
in the simulation. In the experiment, in practice, a tiny fraction of transmitted frames is lost, which
increases the number of retransmissions. Overall, the results of the simulator converge with the
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Fig. 21. Comparison of transmission delays from simulations and experiments for confirmed transmissions
during CAP (CSMA/CA) and CFP (GTS). We vary the number (N) of source devices and the transmission
interval.

experiments results. Differing behavior between the physical channel and the simulation channel
model explain small variations.

7.2 Large-scale Peer-to-peer Communication

We evaluate the transmission delay and packet reception ratio of confirmed CSMA/CA and GTS
transmissions, for varying network sizes (N = 100 and N = 300) and varying transmission inter-
val (Section 5.1). In agreement with Section 5.1, we use high backoff exponent settings to mini-
mize packet collision. To accommodate one slot for every source device during CFP, we configure
the multisuperframe order to 5, which renders 28 GTS and a multisuperframe duration of 30.72 s
(Table 2). Figure 22 presents our results.

CSMA/CA transmission. Our results show that the small network (N=100) renders a 95% packet
reception ratio in the relaxed scenario (Figure 22, top left). The high on-air traffic due to the net-
work size increases packet collisions and CCA failure rates, as analyzed in Section 5. As a result, a
fraction of packet is lost. With half of the transmission interval (Figure 22, bottom left), the small
network reduces the packet reception ratio to ≈60% as a result of the higher on-air traffic.

Scenarios with big networks render an even higher on-air time, which reflects ≈38% packet
reception ratio in the relaxed scenario (Figure 22, top left, N=300) and≈14% in the stressed scenario
(Figure 22, bottom left). This concludes that CSMA/CA is not reliable for large-scale deployments.

Observe that the transmission delay of the majority frames does not exceed 10 s even in the
stressed scenario (Figure 22, bottom left, N=300). This value reflects the worst-case transmission
(maximum CSMA/CA retries and maximum frame retransmissions). The delay in the worst case
is lower than the TX interval in both CAP scenarios. Therefore, the stress in the CAP queue is low,
hence the transmission delay.

GTS transmission. In the relaxed scenario (Figure 22, top right), the transmission delay hits
the maximum value at ≈120 s in both network sizes as a result of the delay of queued packets. As
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Fig. 22. Comparison of transmission delays for relaxed and stressed scenarios, during CAP (CSMA/CA) and
CFP (GTS), for confirmed transmissions and a varying number (N) of nodes.

per Section 5, the transmission delay does not vary with the network sizes, because all devices have
equal GTS resources (one slot per multisuperframe). In contrast, in the stressed scenario (Figure 22,
bottom right) the transmission delay, as a result of the higher MAC queue stress, hits the maximum
at ≈500 s (not shown in the subfigure). Similar to the relaxed scenario, the transmission delay does
not vary with the network size.

The packet reception ratio hits ≈100% in all GTS scenarios as a result of the slot allocation. The
results reflect the robustness of GTS transmissions over CSMA/CA, which make it suitable for
large-scale scenarios. We further analyze this in Section 8.1.

7.3 Impact of the Multisuperframe Duration

We analyze the effect of the multisuperframe duration on the average queue length and transmis-
sion delay on transmissions during CFP. Figure 23 shows the results of the analytical stochastic
model (Section 6) for queue length (left) and transmission delay (right) of unconfirmed transmis-
sions during CFP, for different multisuperframe configurations and transmission intervals. The
results show that the average queue length increases with the multisuperframe order. An incre-
ment of one multisuperframe order duplicates the number of superframes per multisuperframe,
ergo, the multisuperframe duration. With a fixed transmission interval, this situation increases
the system utilization (ρ = λ ·Tmsf ), which reflects the higher queue length. The queue lengths in
the diagonals are equal as a result of equal system utilization.

Observe that variations in the queue length, as a result of variations in the system utilization,
are higher as the system utilization approaches 100%, as depicted in Figure 24. This reflects in
the higher queue utilization in the upper right corner (Figure 23(a)). Transmissions with TX inter-
val=40 s and multisuperframe order of 6 (Tmsf =61.44 s) are out of the convergence region, hence,
they are not shown in the figure.

Figure 23(b) reflects that the transmission delay is the product between the transmission inter-
val and the average queue length, as seen in Section 6.3. The increase in queue length on varying
multisuperframe reflects in the increased transmission delay on higher multisuperframe orders.
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Fig. 23. Queue length 23(a) and transmission delay 23(b) for varying transmission intervals and multisuper-
frame orders. Invalid configurations are marked with hatches.

Fig. 24. Average and maximum queue length for varying system utilization cases (ρ).

Note that equal queue lengths reflect different transmission delays as a result of the longer multi-
superframe duration.

We use the model to calculate the worst-case scenario of queue length for a given system utiliza-
tion (Figure 24). We define the worst-case scenario as the maximum queue length with a confidence
of 99.9%. The results show that the queue length in the worst-case scenario increases linearly until
a system utilization of 60%, from where the queue length grows exponentially. The queue length
exceeds the maximum of openDSME (22 frames) at ρmax =85.6%. We use this value to calculate the
throughput (λmax ) for each multisuperframe order, given that ρmax = λmax ·Tmsf . We compare the
throughput results from the model against simulation environment results (Table 7). The model
shows the maximum throughput (401.24 packets/hour) with MO=3. Observe that an increment in
MO halves the maximum throughput (Table 7, second column, top to bottom). This is required
to maintain the maximum system utilization (85.6%), because an increment in MO duplicates the
multisuperframe duration (Table 2). The model shows a deviation of less than 0.02% with respect
to the simulation.

8 DESIGN DISCUSSIONS

Based on the evaluation results and the analytical stochastic model, we can now discuss optimal
transmission patterns for different scenarios and tradeoffs between different superframe configu-
rations. We also compare design options to comply with local regulations and improve the energy
consumption. Finally, we discuss DSME-LoRa operation under cross-traffic.

8.1 Analysis on Data Transmission

Our evaluation reveals different properties for CSMA/CA and GTS transmissions. On the one
hand, CSMA/CA transmissions in low on-air traffic show lower transmission delays than GTS
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Table 7. Comparison of Throughput (λmax ) Using Results from the
Analytical Stochastic Model and Simulation, for GTS Transmission with

85.6% System Utilization (Maximum Queue Length), for Single GTS
Allocation, and Varying Multisuperframe Orders

Multisuperframe Order Throughput [
packets

hour
] Error [%]

Model Simulation
3 401.24 401.25 2.5 · 10−3

4 200.58 200.62 1.9 · 10−2

5 100.29 100.31 1.9 · 10−2

6 50.15 50.16 2.5 · 10−3

transmissions and similar packet reception ratio. In high on-air traffic scenarios, CSMA/CA fail-
ures and packet collisions increase transmission delays and sharply reduce packet reception, which
render CSMA/CA transmission unusable for periodic communication in large-scale networks. Con-
firmed transmissions improve the packet reception ratio for CSMA/CA, but increases transmission
delay.

On the other hand, GTS transmissions admit ≈ 100% packet reception ratios and transmission
delays for transmission intervals below the maximum system utilization, (85.6% of the multisuper-
frame duration; see Section 7.3). The delay of GTS transmission depends only on the MAC queue
length at the moment of packet scheduling. For applications that require class-based service dif-
ferentiation, priority level of DSME transmissions has potential to reduce transmission delay of
high-priority messages. The network size does not affect transmission delay nor packet reception
ratio for devices in a network that allocate a GTS. In contrast to CSMA/CA, unconfirmed transmis-
sions in GTS perform similar to confirmed transmissions. Hence, we recommend to use confirmed
transmission in GTS only for high-priority data.

Due to the deterministic behavior and very high packet reception ratio, GTS transmission is
a better alternative than CSMA/CA transmissions for reliable large-scale unicast communica-
tion. However, CSMA/CA transmissions are still important for two reasons: (i) CSMA/CA sup-
ports broadcast frame transmissions. This makes CSMA/CA transmissions effective for applica-
tion where a small group of devices broadcasts data to multiple receivers, such as firmware update
scenarios. We leave the evaluation of broadcast transmissions for future work. (ii) The CAP is used
for transmission of MAC commands required for association and slot allocation.

To optimize CSMA/CA transmissions, we recommend the usage of small CSMA/CA backoff ex-
ponent settings for scenarios with low on-air traffic, aiming to reduce transmission delay. However,
we recommend a high backoff exponent to increase the packet reception ratio for higher on-air
traffic to increase PRR.

In common LoRaWAN deployments, the addition of gateways increases PRR by exploiting the
capture effect (see Section 3.2). On frame collision, a fraction of LoRaWAN gateways can still
recover a frame if the power difference with the colliding frames is large enough. Due to the
gateway-less nature of DSME-LoRa, it is not possible to increase PRR of unicast frames by adding
more receivers. However, the capture effect can improve delivery of broadcast frames, in which a
group of devices successfully decode the broadcast frame despite collision. For example, devices
at a close distance to a coordinator may still successfully decode beacons under LoRa cross-traffic
interference.

We show that CAD improves the performance of CSMA/CA transmissions by reducing colli-
sions, which effectively increases PRR and reduces frame retransmissions (Section 5.3). The latter
not only reduces the time on air of devices, but reduces energy consumption. We believe it is

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 69. Publication date: November 2022.



69:32 J. Álamos et al.

Fig. 25. GTS assignment between neighbor devices for star topology (left) and peer-to-peer topology (right).

possible to reduce collisions even further by utilizing a more sophisticated CSMA/CA mechanism
such as LMAC [21].

8.2 Selection of Multisuperframe Configuration

Our evaluation shows that smaller multisuperframe orders decrease the delay of GTS transmis-
sions. However, this reduces the GTS resources (Table 2). Although each GTS defines multiple
unique frequency slots, a device can only allocate one frequency slot per GTS. This limits the
number of GTS links per device to the number of GTS in the multisuperframe structure, which in
turn favors cluster-tree and peer-to-peer topologies over star topologies.

Consider the two example topologies from Figure 25 with nine devices. In the star topology
(Figure 25(a)) each child device allocates a transmission GTS with the coordinator. In the peer-to-
peer topology, each device allocates a transmission GTS with another device of the network. The
star topology requires 8 GTS, one per child device, to establish all links. Hence, the superframe
structure requires at least two superframes per multisuperframe, which sets the multisuperframe
duration to at least 15.36 s.

However, the peer-to-peer topology (Figure 25(b)) allows transmitting frames in the same GTS,
using different channels. As a result, only 4 GTS are needed to schedule all transmissions. There-
fore, a configuration with one superframe per superframe suffices, which sets the multisuper-
frame duration to 7.68 s. Under the same data transmission rates, the peer-to-peer topology reflects
shorter transmission delays than the star topology as a result of the shorter multisuperframe du-
ration. In contrast to the star topology, the peer-to-peer topology does not use all available GTS
resources, which allows to further extend the network.

For scenarios with more than two superframes per multisuperframe, the CAP reduction mech-
anism offers a solution to extend the GTS resources, in which the CAP of all superframes in a
multisuperframe, excluding the first, is replaced by 8 GTS. However, this reduces the CAP time of
a multisuperframe, which stresses CSMA/CA transmissions and thereby challenges dynamic GTS
allocation. We will analyze the impact of CAP reduction on slot allocation in future work.

8.3 Compliance with Regional Regulations

Regions with duty cycle restrictions. We show in Section 5.4 that unconfirmed data trans-
mission to neighboring nodes does not stress the time on air resources of the network in regions
with duty cycle restrictions, because transmissions do not require an intermediate forwarder (in
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Fig. 26. Maximum transmission rate of a source device that transmits confirmed data (16 bytes payload) to
a single sink (star topology) for varying number of source devices in the network and duty cycle.

contrast to LoRaWAN). This makes DSME-LoRa suitable for scenarios, in which a series of devices
communicate directly with one or more sink devices (see Section 2). However, confirmed trans-
missions stress time on air resources of sink devices (Section 5.4). It is therefore crucial to limit the
transmission interval for scenarios, in which a sink device receives packets from multiple source
devices to ensure compliance with duty cycle restrictions.

We show in Figure 26 the theoretical limits of transmission rate per source device as a function
of source devices that transmit to a single sink (star topology). We assume that source devices
do not retransmit data (100% packet reception ratio on first transmission). For example, a star
topology with 10 source devices allows transmission of ≈ 100 packets per hour in the 1% band and
1,000 packets per hour in the 10% band without exceeding the duty cycle restriction. However, a
network with 115 source devices allows in the 1% and 10% bands transmission rates of 10 and 100
packets per hour, respectively.

CSMA/CA transmissions benefit from the 10% band. Nevertheless, the majority of channels in
CFP belong to the 1% band, which restricts data transmissions on source devices and ACK frames
on sink devices. We propose two potential solutions to overcome these limitations: (i) Use the
group ACK feature (Section 3.1), which restricts ACK transmission to one common ACK frame
per multisuperframe. Group ACKs do not contribute to better performance over regular ACK [45],
but reduce the time on air utilization of sink devices by removing the dependency to the number of
source devices; (ii) distribute the DSME-LoRa channels in more bands. For example, channels 11–
25 (see Table 3) can be arranged into 12 channels in the g band, 2 channels in the g1 band
(868.0–868.6 MHz), and 1 channel in the g4 band (869.7–870.0 MHz). If GTS transmissions dis-
tribute evenly among channels, then this allows for ≈20% additional transmissions per device.

Regions with dwell time or channel hopping. Dwell time requirements (e.g., in US902–928)
can be easily addressed by restricting payload size, however, the channel hopping requirement
(e.g., in US902–928 and CN779–787) is incompatible with single channel communication during
CAP. While, on the one hand, limiting CAP transmissions in these regions is not an option, be-
cause CAP is required for slot allocation and MAC control traffic, enabling multichannel CAP,
on the other hand, would require devices to listen on multiple channels (e.g., by using a LoRa
concentrator). Although feasible, it increases deployment costs.

We argue that FHSS transmissions (see Section 3.2) can enable transmissions during CAP for
these regions. In this regard, the channel number may dictate a unique FHSS sequence. This ad-
dresses the problem of channel hopping and dwell time, since transmissions are spread among dif-
ferent carrier frequencies. Thereby, the transmission time per channel is reduced. Still, it degrades
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Fig. 27. Passive consumption of superframe structure with transceiver off during CAP (macRxOnWhenIdle=0)
for varying beacon order.

CCA performance, because CAD can detect only one carrier frequency at a time. Therefore, the
CCA implementation requires a different strategy. We will address this problem in future work.

8.4 Energy Considerations

On standard deployments, the passive consumption of CAP is 146.12 mJ per superframe (19.02 mW)
and therefore not a good option for battery-powered devices. To overcome this problem, we pro-
posed to turn off the CAP in battery-powered devices, as shown in Section 5.7. Although this
prevents frame reception, the indirect transmission feature (Section 3.1) provides a mechanism to
communicate with a device with the receiver off during CAP. On the other side, a device can still
turn on the transceiver during CAP to transmit data to other devices. This allows, for example, to
trigger GTS RX allocation from battery-powered device.

We show in Section 5.7 that the beacon period has a high impact in the energy consumption.
A way to improve this situation is to configure a higher beacon order, which results in a higher
beacon interval and therefore reduces the passive consumption of the beacon slot. We estimate
the power consumption from the measurements in Section 5.7 and present the base consumption
(superframe structure) for different beacon order configurations in Figure 27.

Noteworthy: The beacon order has a high impact on the energy consumption. In the scenario
with BO=3, the total passive consumption hits 2.73 mW, in which the beacon period consumes
≈87%. On the contrary, in scenarios with BO=7 the power consumption is 0.49 mW, in which
the beacon period consumes ≈30% of the energy. Note that BO=7 renders the beacon period to
≈122.88 s—in line with the duration of LoRaWAN class B beacon period (128 s).

Inherently, higher beacon intervals have two potential problems: The scanning procedure takes
longer, which increases the energy consumption during association, and the devices synchronize
to their neighbors less often, which potentially leads to desynchronization due to clock drifts.
Adding more coordinators mitigates the longer association times, because the frequency of bea-
cons increases. The use of real time clocks, available in common LoRa target platforms, mitigates
desynchronization issues (Section 4.1).

To illustrate the tradeoff between transmission delay and energy consumption, we present in
Table 8 the energy consumption and lifetime of a DSME-LoRa sender node for different multisu-
perframe orders. We assume exponentially distributed interarrival times with TX interval=15 m.
The beacon interval is set to 122.28 s (BO=7)—in line with LoRaWAN class B beacon interval— and
assume the device keeps the transceiver on for two beacon intervals to associate with a single coor-
dinator. We also estimate the voltage regulator efficiency to be 90%. For the lifetime estimation, we
assume the device operates on a battery of 2,800 mAh capacity—in line with common off-the-shelf
AA alkaline batteries. We utilize the model (Section 6) to estimate transmission delay.

MO=7 renders the lowest power consumption (0.38 mW) and allows ≈3 years of operation. How-
ever, it also depicts the highest average latency (≈71 s). Note that the delay can increase up to the
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Table 8. Comparison of Average Transmission Delay, Power, and Lifetime for a
DSME-LoRa Sender Device with TX Interval = 15 m and BO = 7, for Varying

Multisuperframe Order

Multisuperframe Order Delay [s] Power [mW] Lifetime [y]

3 3.87 0.58 1.82
4 7.81 0.47 2.24
5 15.9 0.42 2.53
6 32.97 0.39 2.71
7 71.16 0.38 2.81

beacon duration (122.28 s) if the packet is scheduled right after the boundary of the GTS. If the
use case does not tolerate high delays, then the device may opt for a lower multisuperframe order.
Please observe that (i) the energy consumption decreases with an increase of multisuperframe or-
der, and (ii) the energy consumption decreases at a lower rate on higher multisuperframe order.
For example, a reduction from MO=7 to MO=6 increases consumption only by 0.01 mW, while a
reduction from MO=4 to MO=3 increases 0.11 mW. This effect occurs because a decrement in MO
duplicates the number of GTS per beacon interval. Recall that a scheduled GTS-TX consumes 2.2 mJ
even if there is no transmission (see Section 5.7), which reflects the increase in energy consumption.
A device with MO=3 renders an average delay of 3.87 s and lifetime of ≈2 years. If transmission
delay is not critical, then a device can extend the lifetime up to 1 year by setting MO=7. Although
MO beyond 7 is possible, it increases the beacon interval, which challenges device synchronization.
In general, the energy footprint of DSME-LoRA for uplink-oriented applications is higher than Lo-
RaWAN, considering an equivalent LoRaWAN class A device can operate >10 years running on
batteries.

Finally, we present potential optimizations for openDSME and the integration into RIOT, aiming
to reduce power consumption: (i) Avoid turning on the transceiver on a TX GTS if the MAC queue
is empty, which reduces the energy consumption by ≈1.5 mJ per superframe (≈0.20 mW) for the
allocation of one GTS TX slot. This is possible with a minor change in the GTS management
routines of openDSME. (ii) Turn off the transceiver in the beacon slot right after the reception of
the beacon, which potentially reduces ≈16 mJ in the receiving beacon slot. (iii) Use CAD to detect
the preamble of a LoRa frame at the beginning of a GTS RX and proceed to reception if CAD
succeeds, instead of keeping the transceiver idle listening for the duration of the slot (0.48 s). For
example. three CAD attempts consume 0.73 mJ, as analyzed in Section 5.7. Under this scenario, the
passive consumption of the CFP reduces by 18.58 mJ per superframe (2.41 mW).

8.5 Analysis of Cross-traffic

We show in Section 5.5 that DSME-LoRa can coexist with LoRaWAN in the EU868 region, because
LoRaWAN traffic neither interferes with DSME MAC control traffic nor with beacons. Therefore,
concurrent DSME-LoRa and LoRaWAN communication only degrades PRR. As long as the com-
mon channel does not overlap with LoRaWAN channels, the coexistence of DSME-LoRa and Lo-
RaWAN in regions other than EU868 is feasible.

The channel hopping mode in GTS allows communication despite heavy interference on a single
channel but degrades PRR as a result of a fraction of packets being transmitted in the noisy channel.
To overcome this problem, a device may transmit confirmed messages. Thereby, the MAC will
perform the retransmission on a channel with better quality. An alternative solution is to use the
channel adaptation mode of DSME-LoRa (see Section 3.1), in which the source and target device
agree on a different channel if the channel quality is poor. Although openDSME implements the
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channel adaptation mode, it does not implement the required MAC command (DSME Link Report)
to request channel quality information. Therefore, there is no way to infer channel quality and
agree on a different channel.

Poor channel quality in the common channel challenges device synchronization (see Section 5.6),
which prevents normal operation of the DSME-LoRa network. While this is also a problem for
standard DSME, the long time on air and long range of LoRa packets represents a security thread
for DSME-LoRa networks. Attackers may desynchronize devices by jamming the channel during
beacon transmissions.

To address this problem, coordinators may request children devices to switch to a channel with
better quality using the PHY-OP-SWITCH mechanism (see Section 3.1). This requires the coor-
dinator device to estimate the channel quality, for example, by keeping track of the failed CCA
attempts during CSMA/CA transmissions. However, the MAC control frames required by the
PHY-OP-SWITCH mechanism are sent during CAP, which challenges packet delivery under noisy
conditions. Also, a device may detect good channel quality during CAP even if an attacker jams
only beacon frames. An alternative solution is to transmit frames using the FHSS, as analyzed in
Section 8.3. Thereby, packet transmissions can tolerate noise in a single channel by relying on
forward error correction mechanisms on the LoRa PHY. To prevent selective jam attacks, packets
can be transmitted with a pseudorandom FHSS sequence shared by all devices. We will analyze
this proposal in future work.

9 RELATED WORK

9.1 IEEE 802.15.4 Standards TSCH and DSME

The 802.15.4 MAC modes TSCH and DSME [26] have been analyzed [34], modeled [10, 30], and
simulated [6, 16, 29]. The results indicate that TSCH obtains lower latency and higher throughput
for small networks (<30 nodes). DSME outperforms TSCH for higher duty cycles and an increasing
number of nodes. Kauer et al. [31] introduce openDSME, an implementation that is available for
OMNeT++ and as a portable C++ library. We utilize openDSME in our work. The authors compare
simulated performances to real-world measurements—which are on par—and further investigate
group ACKs [45] that do not contribute to better performance over direct ACKs. Vallati et al. [62]
find inefficiencies in DSME network formation and provide countermeasures, however, we move
network formation to future work. Improvements on the QoS of DSME networks were proposed
by Kurunathan [33]. Similar to the IETF standard solution IPv6 over the TSCH mode of IEEE
802.15.4e (6TiSCH) [64] for IPv6 over TSCH, Kurunathan et al. present RPL (Routing Protocol

for Low power and Lossy Networks) over DSME [35]. The IETF further provides an applicabil-
ity statement [9] for RPL in metering use cases and proposes DSME as a MAC. The IEEE 802.15
working group, in contrast, introduces “Low-Energy Critical Infrastructure Monitoring” in the
w-amendment [27], which adds long-range radios that operate in the sub-GHz band. These net-
works are primarily defined to operate in star topologies, which supports up our topology choice
of a single-hop DSME network.

9.2 Analysis of LoRaWAN

Existing LoRaWAN [43] networks are susceptible to collisions [18, 49] as well as energy deple-
tion [46]. Liando et al. [40] provide real-world measurements of LoRa and LoRaWAN and explore
the impact of transmission parameters of the chirp spread spectrum modulation. They thereby
identify optimization potentials for the medium access layer. Slabicki et al. [60] contribute FLoRa,
a LoRa simulator for OMNeT++, and improve the adaptive data rate (ADR) mechanism of Lo-
RaWAN. We utilize FLoRa in our simulations. Rizzi et al. [53] and Leonardi et al. [39] show that
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slight modifications of the LoRaWAN MAC already improve performance metrics of class A de-
ployments, which are centered around the concept of uplink packets from an end node. LoRaWAN,
however, poses a severe challenge on downlink traffic due to band limitations [17, 55] in the sub-
GHz band and contention with unpredictable uplink packets [47]. Vincenzo et al. [65] propose
countermeasures to that problem by adding multiple gateways and a gateway selection mecha-
nism. This decreases losses but adds deployment cost.

LoRaWAN class B (see Section 1), though barely deployed, provides periodic downlink slots
(unlike class A&C) and multicast capabilities [44] through these slots. Elbsnir et al. [15] confirm
that class B decreases downlink latency and loss over class A. Ron et al. [54] derive an optimal
class B configuration to trade waiting time with energy consumption, and Pasetti et al. [50] design
a single-gateway class B LoRaWAN network for 312 LoRa nodes. Unfortunately, a practical eval-
uation is missing. Operating in class B, however, suffers from scalability issues [19, 59]. Despite,
class B still burdens the gateway duty cycle and requires an infrastructure network, hence, it is
not an option for long-range node-to-node communication.

9.3 New Protocols for LoRa

The IETF standardized a compression [22] scheme for LoRa networks. Similarly, Perešíni et al. [51]
introduce a slim packet format with a new LoRa link layer to reduce effective payload. Gonzalez
et al. [23] motivate the development of a new LoRa MAC and present LoRa PHY configurations to
define logical channels, which assists frequency- and time division multiple access protocols. We
apply these considerations in our work.

Cotrim et al. [12] provide a classification for multi-hop LoRaWAN networks. Enabling multi-
hop with long-range radios is a common desire [1, 8, 56, 61]. New designs of time-slotted LoRa
protocols [71] have been analyzed with simulations [38, 69] and practical deployments [70].
Haubro et al. [25] present an adaptation of the 802.15.4 TSCH mode [26] for LoRa. Their real-world
measurements show the applicability of 802.15.4 MAC layers for long-range communication, how-
ever, the experiment deployment consists of only three nodes and limited traffic. The analysis of
duty-cycle compliance remains open. In contrast, we focus on LoRa and the 802.15.4 DSME mode
in our work and aim to fill in the gap of a large-scale deployment that further includes duty-cycle
analyses.

Several MAC and PHY approaches have been analyzed to overcome the problem of concurrent
LoRa communication. Xu et al. [68] propose S-MAC, an adaptive scheduling mechanism for Low
Power Wide Area Network (LPWAN) that exploits the fact many LPWAN applications transmit
period uplink data. Devices with the same spreading factor and known transmission interval are
grouped and assigned a unique carrier frequency to minimize intergroup frame collisions. The ap-
proach brings a 4× throughput improvement for periodic uplink communication, but does not
address downlink limitations of LoRaWAN (see Section 2). The authors of References [48, 52]
present experimental results for contention-based media access with LoRa. Kennedy et al. [48]
explore CSMA/CA with CAD. Results show that listen before talk performs better than ALOHA
in dense deployments, which motivated our efforts of using CSMA/CA with CAD in the con-
tention access period of a DSME frame (see Section 5.3). Gamage et al. [21] propose LMAC, an
improved CSMA/CA protocol, and evaluate on a testbed the design of three advancing versions
of the protocol. Results indicate that the approach brings 2.2× goodput improvement and 2.4×
reduction of energy consumption. We motivate the LMAC approach for future work to reduce
collisions during CAP transmissions (see Section 5.3). There have been multiple proposals to re-
solve LoRa frames collisions at the physical layer [58, 66, 67]. Evaluations of those mechanisms
on software-defined radio show a clear improvement of throughput and overall network capacity,
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but add hardware complexity and extra deployment cost in comparison to common off-the-shelf
LoRa nodes.

Little work analyzes alternative communication pattern over LoRa. Lee et al. [37] propose
gateway-driven requests. This approach follows a request-response pattern and indicates perfor-
mance benefits over producer-driven ALOHA. Similarly, the authors of References [13, 14, 42]
deploy information-centric networking over LoRa radios, which is a data request-driven protocol.
Their work showed, however, the need for a proper LoRa media access layer.

10 CONCLUSIONS AND OUTLOOK

In this work, we exposed the problems of LoRaWAN for node-to-node communication and mo-
tivated the usage of IEEE 802.15.4 DSME over LoRa, which opens LoRa to general networking.
We summarized the DSME mappings for the EU868 region with system integration into the oper-
ating system RIOT and presented a comprehensive evaluation of DSME-LoRa on an IoT testbed.
The results revealed that CSMA/CA transmissions during the contention access period provide a
good tradeoff between transmission delay and packet reception ratio for networks with low traf-
fic and a few nodes. On the contrary, GTS transmissions show about 100% packet reception ratio
and predictable transmission delays for networks with higher network size and higher traffic. We
could show that under the limits of available GTS resources, these performance metrics do not
degrade with the network size. The results also confirmed that coexistence between LoRaWAN
and DSME-LoRa is possible. Nevertheless, noise in the common channel affects normal operation
of the network due to beacon loss.

Our findings confirmed that the Channel Activity Detection feature of LoRa radios is a power-
ful clear channel detection mechanism for CSMA/CA and effectively reduces the number of re-
transmissions ≈15 times in scenarios with moderate traffic. We evaluated the effect of CSMA/CA
backoff exponent settings and could show that higher values mitigate frame collisions during CAP.
The evaluation evidenced that direct communication between devices facilitates compliance with
regional duty cycle regulations. We also confirmed that with optimal MAC configurations, DSME-
LoRa offers a passive consumption of less than 1 mW. Based on a novel analytical stochastic model,
we calculated average queue length in the MAC for slotted transmission, from which we estimated
the transmission delays. Validation of the model with data from the experiments using real IoT
hardware showed an accuracy of 99.99%. We also evaluated DSME-LoRa for larger network sizes
using a well-known simulation environment and confirmed our experimental findings. We evalu-
ated the effect of the MAC configuration and utilized the model to optimize throughput for each
configuration. From the evaluation results, we built an overview of transmission patterns and con-
figurations aiming to provide a good tradeoff between transmission delay, time on air, and energy
consumption, which led to proposing changes in the MAC implementation for improving energy
consumption.

There are three future directions of this research. First, recent IETF concepts of the 6TiSCH
and IPv6 over LPWAN working groups should be adopted while taking advantage of built-in fea-
tures of DSME to enable IPv6 over DSME-LoRa. Second, studying dynamic slot allocation between
DSME-LoRa nodes can foster deployment experience for real-world scenarios. Third, the study
of suitable network layers on top of DSME-LoRa and its performance under massive industrial
deployment [24] shall open a new direction of LoRa-centric research.

Availability of software and reproducibility. We strongly support reproducible research [2, 57]
and utilize open source software and open testbed platforms. All of our work is intended for public
release. The code of the software components (implementation of DSME-LoRa on RIOT, simulation
environment), the implementation of the analytical stochastic model, documentation, datasets, and
related tools are available on GitHub at https://github.com/inetrg/tosn-dsmelora22.
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Fig. 28. Comparison between the expected and the polynomial approximation of the distribution π0 for
varying system loads ρ.

APPENDICS

A NUMERICAL CALCULATION OF STATIONARY MARKOV DISTRIBUTION

In this Appendix, we want to explain how to evaluate the station Markov distribution. For this, let
us define �x as any eigenvector of P to the value of 1. Note that:

�π =
�x∑∞

i=0 xi
. (9)

The equation system that describes the eigenvectors is:

(k0 + k1)x0 + k0x1 = x0

k2x0 + k1x1 + k0x2 = x1

k3x0 + k2x1 + k1x2 + k0x3 = x2

...

k0xn+1 +

n∑
i=0

kn+1−ixi = xn .

Which resolves to:

x1 = x0
(1 − k0 − k1)

k0

xi = x0

(1 − k1)xi−1 −
∑i−2

j=0 ki−jx j

k0
,∀i ∈ [2,∞].

We set x0 = 1 and calculate x1,x2,x3 . . . xN with N a big enough number. We then obtain �π
using Equation (9). This method is not practical, because it requires the calculation of all vector
members. Therefore, we propose to approximate π0 with a polynomial function. The proposed
polynomial function converges to the expected values of π0, as depicted in Figure 28.

We calculate π0 using the former method for different ρ and N = 500. We then fit f (x ) =
ax4 + bx3 + cx2 + dx + e accordingly. The result of the fit procedure produces the polynomial
function:

π0 (ρ) = −0.24ρ4 − 0.21ρ3 − 0.55ρ2 + 0.01ρ1 + 1.
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B GLOSSARY

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e.

BO Beacon Order.
BS Beacon Slot.

CAD Channel Activity Detection.
CAP Contention Access Period.
CCA Clear Channel Assessment.
CFP Contention Free Period.
CRC Cyclic Redundancy Check.
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance.

DER Data Extraction Rate.
DSME Deterministic Synchronous Multichannel Extension.

FHSS Frequency-hopping spread spectrum.

GTS Guaranteed Time Slot.

LPWAN Low Power Wide Area Network.

MAC Media Access Control.
MO Multisuperframe Order.

PAN Personal Area Network.
PHY Physical Layer.
PRR Packet Reception Ratio.
PSDU Physical Service Data Unit.

RSSI Received Signal Strength Indicator.

SO Superframe Order.

TSCH Time Slotted Channel Hopping.
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